
ISSN: 2057-5688

Volume IX Issue I 2017 MARCH http://ijte.uk/ 41

Novel Analysis Low Power German Radix and Split Radix FFT
Processors Using Radix-2 Butterfly Units

Macherla Yamini Saraswathi, Assistant professor
Medikonda Nageswararao, Associate professor

ECE Department, Sri Mittapalli College of Engineering, Guntur, Andhra Pradesh-522233

Abstract:
Split-radix fast Fourier transform (SRFFT) is
an ideal candidate for the implementation of a
low-power and high-speed FFT processor,
because it has the lowest number of arithmetic
operations among all the FFT algorithms. In
the design of such processors, an efficient
addressing scheme for FFT data as well as
twiddle factors is required. The signal flow
graph of SRFFT is the same as radix-2 FFT,
and therefore, the conventional address
generation schemes of FFT data could also be
applied to SRFFT. However, SRFFT has
irregular locations of twiddle factors and
forbids the application of radix-2 address
generation methods. This brief presents a
shared-memory low-power SRFFT processor
architecture. We also introduce German Radix
FFT and show that SRFFT and GRFFT can be
computed by using a modified radix-2
butterfly unit. The time constraint and power
constraint will be calculated. Both SRFFT and
GRFFT is been compared. Implementation is
done using Mat Lab Tool.
Keywords:
FFT, Butterfly, Radix 2, SRFFT, GRFFT
1. Introduction:
The fast Fourier transform (FFT) is one of the
most important and fundamental algorithms in
the digital signal processing area. Since the
discovery of FFT, have so many variants of
the FFT algorithm have been developed, such
as radix-2 and radix-4 FFT. In 1984, Duhamel
and Hollmann [1] proposed a new variant of
FFT algorithm called split-radix FFT (SRFFT).
Their algorithm requires the least number of

multiplications and additions among all the
known FFT algorithms. Since arithmetic
operations significantly contribute to overall
system power consumption, SRFFT is a good
candidate for the implementation of a low-
power FFT processor. In general, all the FFT
processors can be categorized into two main
groups: pipelined processors or shared-
memory processors. Examples of pipelined
FFT processors can be found in [2] and [3]. A
pipelined architecture provides high
throughputs, but it requires more hardware
resources at the same time. One or multiple
pipelines are often implemented, each
consisting of butterfly units and control logic.
In shared-memory-based architecture requires
the least amount of hardware resources at the
expense of slower throughput. Examples of
such processors can be found in [4] and [5]. In
the radix-2 shared-memory architecture, the
FFT data are organized into two memory
banks. At each clock cycle, two FFT data are
provided by memory banks and one butterfly
unit is used to process the data. At the next
clock cycle, the calculation results are written
back to the memory banks and replace the old
data. The scope of this brief is limited to the
shared-memory architecture.

In the shared-memory architecture, an
efficient addressing scheme for FFT data as
well as coefficients (called twiddle factors)
is required. For the fixed-radix FFT, previous
works of this topic can be found in [5] and [6].
For split-radix FFT, it conventionally involves
an L-shaped butterfly data path whose
irregular shape has uneven latencies and



ISSN: 2057-5688

Volume IX Issue I 2017 MARCH http://ijte.uk/ 42

makes scheduling difficult. In this brief, we
show that the SRFFT can be computed by
using a modified radix-2 butterfly structure.
Our contribution consists of mapping the split-
radix FFT algorithm to the shared-memory
architecture, leveraging the lower
multiplicative complexity of the algorithm to
reduce the dynamic power and developing two
novel twiddle factor addressing schemes for
the split-radix FFT.

2. Butterfly Diagram:

In the context of fast Fourier
transform algorithms, a butterfly is a portion of
the computation that combines the results of
smaller discrete Fourier transforms (DFTs)
into a larger DFT, or vice versa (breaking a
larger DFT up into subtransforms). The name
"butterfly" comes from the shape of the data-
flow diagram in the radix-2 case, as described
below. The earliest occurrence in print of the
term is thought to be in a 1969 MIT technical
report. The same structure can also be found in
the Viterbi algorithm, used for finding the
most likely sequence of hidden states.

Most commonly, the term "butterfly"
appears in the context of the Cooley–Tukey
FFT algorithm, which recursively breaks down
a DFT of composite size n = rm into r smaller
transforms of size m where r is the "radix" of
the transform. These smaller DFTs are then
combined via size-r butterflies, which
themselves are DFTs of
size r (performed m times on corresponding
outputs of the sub-transforms) pre-multiplied
by roots of unity (known as twiddle factors).
(This is the "decimation in time" case; one can
also perform the steps in reverse, known as
"decimation in frequency", where the
butterflies come first and are post-multiplied
by twiddle factors.

Radix 2 Butterfly Diagram:

In the case of the radix-2 Cooley–
Tukey algorithm, the butterfly is simply a DFT
of size-2 that takes two inputs (x0, x1)
(corresponding outputs of the two sub-
transforms) and gives two outputs (y0, y1) by
the formula (not including twiddle factors):

If one draws the data-flow diagram for this
pair of operations, the (x0, x1) to (y0, y1) lines
cross and resemble the wings of a butterfly,
hence the name (see also the illustration at
right).

where,

where k is an integer depending on the part of
the transform being computed. Whereas the
corresponding inverse transform can
mathematically be performed by
replacing ω with ω−1 (and possibly multiplying
by an overall scale factor, depending on the
normalization convention), one may also
directly invert the butterflies:

corresponding to a decimation-in-frequency
FFT algorithm.

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Viterbi_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Root_of_unity
https://en.wikipedia.org/wiki/Twiddle_factor
https://en.wikipedia.org/wiki/Twiddle_factor
https://en.wikipedia.org/wiki/Butterfly


ISSN: 2057-5688

Volume IX Issue I 2017 MARCH http://ijte.uk/ 43

Fig 1. A decimation-in-time radix-2 FFT
breaks a length-N DFT into two length-N/2
DFTs followed by a combining stage
consisting of many butterfly operations.

3.Comparison of SRFFT And Radix-2 FFT:

The N-point discrete Fourier transform is
defined by

where k = 0, 1, . . . , N −1 and

If we split X(k)

into even and odd terms, radix-2 FFT can be
derived as

The basic idea behind the SRFFT is the
application of a radix-2 index map to the even-
index terms and a radix-4 map to the odd-
index terms.

Fig 2. Signal Flow graph of Radix 2 FFT

For the even-index terms, it can be
decomposed as (2). For the odd-index terms, it
can be decomposed as

where k = 0, 1, . . . , N/4.



ISSN: 2057-5688

Volume IX Issue I 2017 MARCH http://ijte.uk/ 44

Fig 3. Signal Flow Graph of SRFFT

Each L butterfly contains two nontrivial
complex multiplications, and therefore, the
total number of nontrivial complex
multiplicationsMSR in SRFFT is

In the (S − 1)th pass, the number of SR
butterfly ��宀� is

However, in the (S − 1)th pass, each L
butterfly does not contain any nontrivial
twiddle factors and hence, the total number of
nontrivial multiplications��ᦙ

' in SRFFT is

For the conventional radix-2 FFT, the total
number of complex multiplications�ᦙ� is

Fig 4. Shared Memory Architecture

4. SRFFT and DRFFT:

The split-radix FFT, along with its variations,
long had the distinction of achieving the
lowest published arithmetic operation count
(total exact number of required real additions
and multiplications) to compute a DFT
of power-of-two sizes N.

The split-radix algorithm can only be applied
when N is a multiple of 4, but since it breaks a
DFT into smaller DFTs it can be combined
with any other FFT algorithm as desired.

Split Radix Decomposition:

Recall that the DFT is defined by the formula:

where K is an integer ranging from 0 to N-1
and wn denotes the primitive root of unity:

and thus

The split-radix algorithm works by expressing
this summation in terms of three smaller
summations. (Here, we give the "decimation in
time" version of the split-radix FFT; the dual

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Power_of_two
https://en.wikipedia.org/wiki/Root_of_unity


ISSN: 2057-5688

Volume IX Issue I 2017 MARCH http://ijte.uk/ 45

decimation in frequency version is essentially
just the reverse of these steps.)

First, a summation over the even indices x�n� .
Second, a summation over the odd indices
broken into two pieces: x4n4 +� and x4n4 +3 ,
according to whether the index is 1 or
3 modulo 4. Here, nm denotes an index that
runs from 0 to N/m -1. The resulting
summations look like:

where we have used the fact that,

These three sums correspond
to portions of radix-2 (size N/2) and radix-4
(size N/4) Cooley-Tukey steps, respectively.
(The underlying idea is that the even-index
subtransform of radix-2 has no multiplicative
factor in front of it, so it should be left as-is,
while the odd-index subtransform of radix-2
benefits by combining a second recursive
subdivision.)

These smaller summations are now exactly
DFTs of length N/2 and N/4, which can be
performed recursively and then recombined.

More specifically, let Uk denote the result of
the DFT of length N/2 (for k =
0,…………., N �宀� ), and let zk and zk

' denote
the results of the DFTs of length N/4 (for k =
0,…………., N 4宀� ). Then the output N 4 is
simply:

This, however, performs unnecessary
calculations, since K ≥ N 4 turn out to share
many calculations with K � N 4 . In
particular, if we add N/4 to k, the size-N/4
DFTs are not changed (because they are

periodic in k), while the size-N/2 DFT is
unchanged if we add N/2 to k. So, the only
things that change are the wn

K and wn
3K terms,

known as twiddle factors. Here, we use the
identities:

to finally arrive at:

which gives all of the outputs Xk if we
let k range from 0 to N

�
in the above four

expressions. Notice that these expressions are
arranged so that we need to combine the
various DFT outputs by pairs of additions and
subtractions, which are known as butterflies.
In order to obtain the minimal operation count
for this algorithm, one needs to take into
account special cases for (where the twiddle
factors are unity) and for k= N

8
(where the

twiddle factors are (i∓i)
�

and can be

multiplied more quickly); see, e.g. Sorensen et
al. (1986). Multiplications by ∓ � and ∓ i are
ordinarily counted as free (all negations can be
absorbed by converting additions into
subtractions or vice versa).

DRFFT:
German style DIT varies the algorithm
effectively. The level of stage reduction is
more by implementing GRFFT. For example if
stages N=8, then it get reduces to Log n to
base 2 stages. By which the implementation is
performed in less time and the processor speed
can be increased.
5. Results:

https://en.wikipedia.org/wiki/Even_and_odd_numbers
https://en.wikipedia.org/wiki/Modulo_operation
https://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Twiddle_factor
https://en.wikipedia.org/wiki/Butterfly_diagram


ISSN: 2057-5688

Volume IX Issue I 2017 MARCH http://ijte.uk/ 46

Fig 5. Execution time vs Length

The above fig 5 show the execution time taken
by the processor at different lengths. The
execution time using German based FFT and
Split Radix FFT are compared and shown in
the above figure. It also shows that GRFFT
obtained better outputs.

Execution Time : 0.000668 sec

Power consumption : 0.012782 W

Execution Time : 0.000384 sec

Power consumption : 0.012775 W

Power(W) Time(Sec)
SRFFT 0.012782 0.000668
German
Radix FFT

0.012775 0.000384

6. Conclusion:
In this project the comparison of HIGH
SPEED SRFFT and German Radix FFT is
been performed. The main aim is to improve
the speed of the processor, which is one of the
major constraint in VLSI processing. The
power also plays a important role. The power
constraint is also calculated. The results
obtained shows that the time constraint is more

reduced by using German Radix FFT when
compared with SRFFT. Hence the German
Radix FFT can be used in many processors.
The power variation is very low when
compared to both the techniques. The above is
implemented used MATLAB tool.
References:
[1] P. Duhamel and H. Hollmann, “‘Split
radix’ FFT algorithm,” Electron. Lett., vol. 20,
no. 1, pp. 14–16, Jan. 1984.
[2] M. A. Richards, “On hardware
implementation of the split-radix FFT,” IEEE
Trans. Acoust., Speech Signal Process., vol. 36,
no. 10, pp. 1575–1581, Oct. 1988.
[3] J. Chen, J. Hu, S. Lee, and G. E. Sobelman,
“Hardware efficient mixed radix-25/16/9 FFT
for LTE systems,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 23, no. 2, pp.
221–229, Feb. 2015.
[4] L. G. Johnson, “Conflict free memory
addressing for dedicated FFT hardware,” IEEE
Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 39, no. 5, pp. 312–316, May
1992.
[5] D. Cohen, “Simplified control of FFT
hardware,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 24, no. 6, pp. 577–579,
Dec. 1976.
[6] X. Xiao, E. Oruklu, and J. Saniie, “An
efficient FFT engine with reduced addressing
logic,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 55, no. 11, pp. 1149–1153, Nov.
2008.
[7] Z. Qian, N. Nasiri, O. Segal, and M.
Margala, “FPGA implementation of low-
power split-radix FFT processors,” in Proc.
24th Int. Conf. Field Program. Logic Appl.,
Munich, Germany, Sep. 2014, pp. 1–2.
[8] A. N. Skodras and A. G. Constantinides,
“Efficient computation of the split-radix FFT,”
IEE Proc. F-Radar Signal Process., vol. 139,
no. 1, pp. 56–60, Feb. 1992.
[9] H. V. Sorensen, M. T. Heideman, and C. S.
Burrus, “On computing the split-radix FFT,”



ISSN: 2057-5688

Volume IX Issue I 2017 MARCH http://ijte.uk/ 47

IEEE Trans. Acoust., Speech Signal Process.,
vol. 34, no. 1, pp. 152–156, Feb. 1986.
[10] J. Kwong and M. Goel, “A high
performance split-radix FFT with constant
geometry architecture,” in Proc. Design,
Autom. Test Eur. Conf. Exhibit. (DATE),
Dresden, Germany, Mar. 2012, pp. 1537–1542.
[11] W.-C. Yeh and C.-W. Jen, “High-speed
and low-power split-radix FFT,” IEEE Trans.
Signal Process., vol. 51, no. 3, pp. 864–874,
Mar. 2003.


