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Abstract-
In medical imaging using different modalities
such as MRI and CT, complementary
information of a targeted organ will be
captured. All the necessary information from
these two modalities has to be integrated into
a single image for better diagnosis and
treatment of a patient. Image fusion is a
process of combining useful or
complementary information from multiple
images into a single image. In this Project, we
present a new weighted average fusion
algorithm to fuse MRI and CT images of a
brain based on guided image filters and the
image statistics. The proposed algorithm is as
follows: detail layers are extracted from each
source image by using a guided image filter.
Weights corresponding to each source image
are calculated from the detail layers with help
of image statistics. Then a weighted average
fusion strategy is implemented to integrate
source image information into a single image.
Fusion performance is assessed both
qualitatively and quantitatively. Proposed
method is compared with the traditional and
recent image fusion methods. Results showed
that our algorithm yields superior
performance.

I. Introduction:

With the rapid development of sensor and
computer technology, medical imaging has
emerged as an irreplaceable component in various
clinical applications including diagnosis, treatment
planning and surgical navigation. To provide
medical practitioners sufficient information for
clinical purposes, medical images obtained with
multiple modalities are usually required, such as
X-ray, computed tomography (CT), magnetic
resonance (MR), positron emission tomography

(PET), single photon emission computed
tomography (SPECT), etc. Due to the difference
in imaging mechanism, medical images with
different modalities focus on different categories
of organ/tissue information. For instance, the CT
images are commonly used for the precise
localization of dense structures like bones and
implants, the MR images can provide excellent
soft-tissue details with high-resolution anatomical
information, while the functional information on
blood flow and metabolic changes can be offered
by PET and SPECT images but with low spatial
resolution. Multi-modal medical image fusion
aims at combining the complementary information
contained in different source images by generating
a composite image for visualisation, which can
help physicians make easier and better decisions
for various purposes [1].In recent years, a variety
of medical image fusion methods have been
proposed [2]–[17]. Due to the difference in
imaging mechanism, the intensities of different
source images at the same location often vary
significantly. For this reason, most of these fusion
algorithms are introduced in a multi-scale manner
to pursue perceptually good results. In general,
these Multi-Scale transform (MST)-based fusion
methods consist of three steps, namely,
decomposition, fusion and reconstruction. Multi-
scale transforms which are frequently studied in
image fusion include pyramids [17]–[19],
wavelets [9], [20], [21], multi-scale geometrical
transforms like contour let and shear let [2], [6],
[10], [16]. In image fusion research, sparse
representation is another popular image modelling
approach, which has also been successfully
applied to fuse multimodal medical images [4], [5],
[15], [22]. One of the most crucial issues in image
fusion is calculating a weight map which
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integrates the pixel activity information from
different sources. In most existing fusion methods,
this target is achieved by two steps known as

activity level measurement and weight assignment.
In conventional transform domain fusion methods,
the

absolute value of a decomposed co-efficient (or the
sum of those values within a small window) is
employed to measure its activity, and then a
“choose-max” or “weighted-average” fusion rule is
applied to assign weights to different sources based
on the obtained measurement. Clearly, this kind of
activity measurement and weight assignment are
usually not very robust resulting from many factors
like noise, Miss- registration and the difference
between source pixel intensities. To improve the
fusion performance, many complex decomposition
approaches and elaborate weight assignment
strategies have been recently proposed in the
literature [6], [8]–[13], [15], [16].However, it is
actually not an easy task to design a ideal activity
level measurement or weight assignment strategy
which can comprehensively take all the key issues
of fusion into account. Moreover, these two steps
are designed individually without a strong
association by many fusion methods, which may
greatly limit the algorithm performance. In this
paper, this issue is addressed from another
viewpoint to overcome the difficulty in designing
robust activity level measurements and weight
assignment strategies. Specifically, a Convolutional
neural network (CNN) [23] is trained to encode a
direct mapping from source images to the weight
map. In this way, the activity level measurement
and weight assignment can be jointly achieved in an
“optimal” manner via learning network parameters.
Considering the different imaging modalities of
multi-modal medical images, we adopt a multi-
scale approach via image pyramids to make the
fusion process more consistent with human visual
perception. In addition, a local similarity-based
strategy is applied to adaptively adjust the fusion
mode for the decomposed Coefficients’ of source
images.

MAGNETIC RESONANCE IMAGING (MRI)-

MR imaging is a non-invasive imaging technology
that produces three dimensional detailed anatomical
images. It is often used for disease detection,
diagnosis, and treatment monitoring. It is based on
sophisticated technology that excites and detects the
change in the direction of the rotational axis of
protons found in the water that makes up living
tissues.MRIs employ powerful magnets which
produce a strong magnetic field that forces protons
in the body to align with that field. When a
radiofrequency current is then pulsed through the
patient, the protons are stimulated, and spin out of
equilibrium, straining against the pull of the
magnetic field. When the radiofrequency field is
turned off, the MRI sensors are able to detect the
energy released as the protons realign with the
magnetic field. The time it takes for the protons to
realign with the magnetic field, as well as the
amount of energy released changes depending on
the environment and the chemical nature of the
molecules. Physicians are able to tell the difference
between various types of tissues based on these
magnetic properties.To obtain an MRI image, a
patient is placed inside a large magnet and must
remain very still during the imaging process in
order not to blur the image. Contrast agents (often
containing the element Gadolinium) may be given
to a patient intravenously before or during the MRI
to increase the speed at which protons realign with
the magnetic field. The faster the protons realign,
the brighter the image.One kind of specialised MRI
is functional Magnetic Resonance Imaging (FMRI.)
This is used to observe brain structures and
determine which areas of the brain “activate”
(consume more oxygen) during various cognitive
tasks. It is used to advance the understanding of
brain organisation and offers a potential new
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standard for assessing neurological status and
neurosurgical risk.Traditional MRI, unlike PET or
SPECT, cannot measure metabolic rates. However,
researchers funded by NIBIB have discovered a
way to inject specialised compounds
(hyperpolarized carbon 13) into prostate cancer
patients to measure the metabolic rate of a tumour.
This information can provide a fast and accurate
picture of the tumour’s aggressiveness. Monitoring
disease progression can improve risk prediction,
which is critical for prostate cancer patients who
often adopt a wait and watch approach

II. II. Literature survey:
III.

In our recent work [24], a CNN-based multi-focus
image fusion method which can obtain state-of-the-
art results was proposed. In the method, two source
images are fed to the two branches of a Siamese
convolutional network in which the two branches
share the same architecture and weights [25],
respectively. Each branch contains three
convolutional layers and the obtained feature maps
essentially act as the role of activity level measures.
The feature maps of two branches are concatenated
and then pass through two fully-connected layers
(they are converted into equivalent convolutional
layers in the fusion process to allow arbitrary input
size [26]), which can be viewed as the weight
assignment part of a fusion method. As a result, the
value of each co- efficient in the network output
map indicates the focus property of a pair of source
image patches at a corresponding location. By
assigning the value as the weights of all the pixels
within the patch location and then averaging the
overlapped pixels, a focus map with the same size
of source images is generated. The final fused
image is obtained based on the focus map using the
weighted-average rule along with two consistency
verification techniques [20]. In [24], the feasibility
and superiority of CNNs used for image fusion
have been explicitly presented. Please refer to [24]

for more details.The target of this paper is to extend
the CNN model to medical image fusion. However,
the method proposed in [24] cannot be directly used
to fuse medical images primarily due to the
following two reasons.To address the first problem,
we apply a pyramid-based multi-scale approach[27]
to pursue perceptually better results. Specifically,
each source image is decomposed into a Laplacian
pyramid while the weight map obtained from the
network is decomposed into a Gaussian pyramid.
The fusion procedure is conducted at every
decomposition level.For the second issue, we adopt
a local similarity-based fusion strategy to determine
the fusion mode for the decomposed coefficients
[18]. When the contents of source images have high
similarity, the “weighted-average” fusion mode is
applied to avoid losing useful information. In this
situation, the weights obtained by the CNN are
more reliable than the coefficient based measure, so
they are employed as the merging weights. When
the similarity of image contents is low, the “choose-
max” or “selection” fusion mode is preferred to
preserve the salient details from source images. In
this situation, the CNN output is not reliable, and
the pixel activity is directly measured by the
absolute values of the decomposed
coefficients.Based on the above ideas, the CNN
model presented in [24] can be applied to the fusion
of medical images. It is worthwhile to note that

both the pyramid-based decomposition and the
similarity-based fusion mode determination are just
“naive” techniques which are commonly used in the
field of image fusion. Nevertheless, it will be
demonstrated that a reasonable usage of these
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techniques incorporated with the CNN model can
result in state-of-the-art fusion performance.

IV. III. Proposed methodology:
V.

Fig shows the convolutional network used in the
proposed fusion algorithm. It is a Siamese network
in which the weights of the two branches are
constrained to the same. Each branch consists of
three convolutional layers and one max-pooling
layer which is the same as the network used in [24].
To reduce the memory consumption as well as
increase the computational efficiency, we adopt a
much slighter model in this work by removing a
fully connected layer from the network used in [24].
The 512 feature maps after concatenation are
directly connected to a 2-dimensional vector. It can
be calculated that the slight mode only takes up
about 1.66 MB of physical memory in single
precision, which is significantly less than the 33.6
MB model employed in [24]. Finally, this
2dimensional vector is fed to a 2-way Soft Max
layer (not shown in Fig. 1), which produces a
probability distribution over two classes. The two
classes correspond to two kinds of normalised
weight assignment results, namely, “First patch 1
and second patch 0” and “first patch 0 and second
patch 1”, respectively. The probability of each class
indicates the possibility of each weight assignment.
In this situation, also considering that the sum of
two output probabilities is 1, the probability of each
class just indicates the weight assigned to its
corresponding input patch.

Fig 1: Architecture for CNN training
The network is trained by high-quality image

patches and their blurred versions using the
approach in [24]. In the training process, the spatial
size of the input patch is set to 16 × 16 according to
the analysis in [24]. The creation of training
examples is based on multi-scale Gaussian filtering
and random sampling. The SoftMax loss function is
employed as the optimization objective and we
adopt the stochastic gradient descent (SGD)
algorithm to minimise it. The training process is
operated on the popular deep learning framework
Caffe [28]. Please refer to [24] for the details of
example generation and network training.Since the
network has a fully connected layer that has fixed
dimensions (pre- defined) on input and output data,

the input of the network must have a fixed size to
ensure that the input data of a fully connected layer
is fixed. In image fusion, to handle source images of
arbitrary size, one can divide the images into
overlapping patches and input each patch pair into
the network, but it will introduce many repeated
calculations. To solve this problem, we first convert
the fully connected layer into an equivalent
convolutional layer containing two kernels of size 8
× 8 × 512 [26]. After the conversion, the network
can process source images of arbitrary size to
generate a dense prediction map, in which each
prediction (a 2-dimensional vector) contains the
relative clarity information of a source patch pair at
the corresponding location. As there are only two
dimensions in each prediction and their sum is
normalised to 1, the output can be simplified as the
weight of the first (or second) source. Finally, to
obtain a weight map with the same size of source
images, we assign the value as the weights of all the
pixels within the patch location and average the
overlapped pixels.
Only terms for which (x-m)/2 and (y-n)/2 are
integers are included in the sum. Rather than
encode 0,0 and 1 is encoded. This results in a net
data compression because:0is largely uncorrelated,
and so may be represented pixel by pixel with many
fewer bitsthan 0 1islow pass filtered, and so may be
encoded at a reduced sample rate. Further data
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compression is achieved by iterating this
process.By repeating these steps several times, a
sequence of images 0, 1, 2, … , are obtained. If
we now imagine these images stacked one above
another, the result is a tapering pyramid data
structure - hence the name. The Laplacian pyramid
can thus be used to represent images as a series of
band-pass filtered images, each sampled at
successively sparser densities.

VI. IV. Simulation Results:

All the experiments have been done in MATLAB
2016b version under the high- speed CPU
conditions for faster running time with test images
shown in

Fig2:Proposedmedical imagefusion

Fig3:Testimagesdataset1(MR-Gad&CT)
Aim of any fusion algorithm is to integrate required
information from both source images in the output
image. Fused images cannot be judged exclusively
by seeing the output image or by measuring fusion
metrics. It should be judged qualitatively using
visual display and quantitatively using fusion
metrics. In this section, we are presenting both
visual quality and quantitative analysis of proposed
and existing algorithms such as, Wavelet based
methods discrete wavelet transform (DWT),
stationary wavelet transform (SWT). Analysis of
fusion metrics along with image quality assessment
(IQA) metrics such as peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM),
correlation coefficient (CC), root mean square error
(RMSE) and entropy (E) are considered to verify
the effectiveness of the proposed algorithm. The
objective of any fusion algorithm is to generate a

qualitative fused image.For better quality, fused
image should have optimal values for all these
metrics. The fusion metric with best value is
highlighted in bold letters.
Methodology PSNR

(indB)
RMSE cc ssim entropy

SWT 68.95 0.0909 0.94 0.988 1.12
DWT 68.69 0.093 0.944 0.98 1.11
Proposedmethod90.51 0.000471 1 4.37

Table 1:Quantative analysis of fusion method for
data set

V. Conclusion:
In this Project, a medical image fusion method
based on convolutional neural networks is proposed.
We employ a Siamese network to generate a direct
mapping from source images to a weight map
which contains the integrated pixel activity
information. The main novelty of this approach is it
can jointly implement activity level measurement

and weight assignment via network learning, which
can overcome the difficulty of artificial design. To
achieve perceptually good results, some popular
techniques in image fusion such as multi-scale
processing and adaptive fusion mode selection are
appropriately adopted. Experimental results
demonstrate that the proposed method can obtain
high-quality results in terms of visual quality and
objective metrics. Infi addition to the proposed
algorithm itself, another contribution of this work is
that it exhibits the great potential of some deep
learning techniques for image fusion, which will be
further studied in the future.
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