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Abstract:

Riemann, who was born sixty years before Finsler, really started the study on Finsler

geometry. In his famous lecture, Riemann introduced the concept of manifolds,

generalised metric, and gave an example of Finsler metric. The computations for this

kind of case, he said, are challenging. This topic has not received much attention from

mathematicians. Finsler, though, was the one who initially brought up the notion of

it.The following study project serves as an example of how to expand the findings on

Finsler space with a particular (, )-metric. We have examined the hypersurfaces of this

generalised (, )-metric as first and second type hyperplanes but not as third kind

hyperplanes. The current work provides a new geometric perspective for solving some

problems using projective change, projective flat, Douglas space, dually flat,

reversible geodesic, Berwald space, two-dimensional Landsberg space, Einstein

metric, hypersurfaces, and hyperplanes of various types. In conclusion, the work

provides an insight into Finsler spaces with some (, )-metric and its possibilities

towards some applications.

1 Introduction

Finsler geometry is a kind of differential

geometry. It usually considers as a

generalization of Riemannian geome-try.

In fact, Riemann, in his epoc-making

lecture in 1854, already suggested a

possibility of studying a geometry

moregeneral than Riemannian geometry,

but he said the geometrical meanings of

quantities appearing in such a gener-

alized space will not be clear and it can’t

produce any contribution to the

geometry. Furthermore,

Mathematicinsneglected the study of
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such spaces for more than 60 years. In

his age of twenty four years, Finsler

took up the problemrelated to the space

equipped with the metric function which

was mentioned by Riemann. In 1918, he

submitted hisepoc-making thesis to

Gotingen university. He studied this

geometry from the stand point of a

geometrization of thecalculus of

variations. This thesis draws the

attention to the most of the

mathematicians working in geometry.

So,Finsler (1894-1970) was considered

the originator of the Finsler geometry.In

1927, Taylor gave the name Finsler

space to the manifold equipped with this

generalized metric.In 1934, Cartan

introduced a system of axioms to give

uniquely a Finsler connection from the

fundamental func-tion. In the same line,

Randers drew the attention to several

physicists towards Finsler geometry.In

1951, Rund introduced a new concept of

parallelism considering Finsler geometry

as locally Minkowskian.Later on

Mokoto Matsumoto devoted his effort to

such approach and contributed much to

this field. He wrote amonograph "The

theory of Finsler connections" and

circulated it among the mathematicians

working in the field.The Finsler

geometry has many applications in

various fields of Physics and Biology

such as the theory of

relativity,thermodynamics, optics,

ecology, evolution and developmental

biology. Several mathematicians

contributed to thestudy and

improvement of Finsler geometry.The

historical studies about development

stages for Finsler geometry have been

introduced by Matsumoto [37]and Won

[14]. In this paper, we will elaborate the

discussion to conclude thirty studies in

terms to it

2 Basic Concepts of Finsler Geometry

In the calculus of variations, it is

referred to as an indicatrix. Albert

Einstein took numerous of Minkowski's

classes at the Eidgenossische

Polytechnikum in Zurich, where

Minkowski was a professor. The idea of

4-dimensional Minkowski space, which

was introduced by Minkowski, served as

the basis for Einstein's theory of special

relativity. Out of the 23 issues presented

at the second International Congress of

Mathematicians in 1900, D. Hilbert [56]

answered 10 of them. Problem 4: "The

straight-line as the smallest path joining

two points" and Problem 23: "The
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further development of the methods of

the calculus of variations" were two

geometry-related topics that were

tackled in this lecture. The Gottingen

lectures by D. Hilbert on "The Calculus

of Variations" had an impact on Finsler's

master Caratheodory, who took on the

task of developing a function y = y(x) by

adopting the minimum of the integral I

as the initial value.

Caratheodory's early work was founded

on the calculus of variations as a result

of this effect, and he developed a

method for discovering the minimizer of

certain integrals. In this method, the

Hamilton-Jacobi equations were used.

This approach has been dubbed "The

Royal Road to the Calculus of

Variations" in recent times. He found

the connection between the calculus of

variations and the first-order partial

differential equations. Later, his idea of

Riemannian space—a multidimensional

domain—led to the development of the

general theory of relativity. The current

definition of an abstract Riemannian

manifold was ultimately developed as a

result of this in a precise manner. The

core idea of "Finsler space" was born as

a result. The "Curves and Surfaces in

General Spaces" thesis by Finsler [46] is

the source of Finsler's geometry. Under

the direction of Caratheodory, a

specialist in calculus of variations, he

completed his thesis. Finsler used the

calculus of variations extensively to

address geometry problems involving

spaces and the Finsler metric. The

integral minimizer's benefit

He saw straight away that the Finser

metric F(x, y) must be positively definite

in order to satisfy the convexity

constraint. The discoveries made by

Finsler had a profound effect on

succeeding research generations.

3 Evaluation and Discussion

The following chart illustrates the

linkages between all four Finsler

connections that were described before.

ces If a Riemannian space is thought to

have specific geometrical properties,

obey special tensor equations, admit

special tensor fields, or any combination

of these, it spaces, which are particular
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Finsler spaces in Riemannian and

Minkowskian geometry, respectively.

We thus have a significant challenge in

classifying all Minkowskian spaces. The

intriguing basic functions F(x, y) are

simple to express in their concrete forms.

The Randers metric, the Kropina metric,

the generalised Kropina metric, the

Matsumoto metric, and the cubic metric

are a few examples. Finding Finsler

spaces that are fairly equivalent to

Riemannian spaces but not Riemannian

and Minkowskian spaces that are akin to

flat spaces but not flat is crucial for the

advancement of Finsler geometry. The

specific tensor equations fulfilled by

torsion, curvature, and other significant

tensors are the major focus of this

section. We provide some definitions of

particular Finsler spaces in the sections

that follow, along with the findings that

follow.

The basic function L(x, y) of a Finsler

space F n = (Mn, L(x, y)) is said to be a

Riemannian space if

The class of all Riemannian spaces

among Finsler spaces is denoted as Cijk

= 0, which means that the vertical

connection v of the Cartan's connection

C is flat. If there is a coordinate system

(x i) where L is merely a function of y i,

then a Finsler space F n = (Mn, L(x, y))

is referred to as a locally Minkowskian

space [96]. If and only if a Finsler space

is an inch more conventional than a

Riemannian and locally Minkowskian

space, then it qualifies as being locally

Minkowskian. It offers illustrations that

are flawlessly Finslerian. The fact that

all of a Berwald space's tangent spaces

are linearly isometric to a single

Minkowski space is its most clearly

understood characteristic. It is possible

to assert that the Berwald space

unmistakably developed from a single

Minkowski space. If the Berwald

connection B's connection coefficients

Gi jk are given by

are only a function of position, the area

is referred to as a Berwald space. If and

only if, a Finsler space is Berwald in

light of Finsler connections.

i. For CΓ : C h ij|k = 0.

ii. For RΓ : F h ijk = 0.

iii. For BΓ : Gh ijk = 0.

A Finsler space is called a Landsbergs

space [96] if the Berwald connection BΓ

is h-metrical i.e.,
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gij(k) = 0. In terms of conditions of

the Cartan’s connection CΓ, a Landsberg

space is described by

i. P i jk = 0.

ii. P h ijk = 0.

A Finsler space F n of the dimension n is

called a Douglas space if

are all homogeneous polynomials in y i

of degree three.

A Finsler space of dimension n, more

than two, is called C-reducible if Cijk is

written in the form [96]

If Cijk has the form [96], then a Finsler

space of dimension n, larger than two, is

semi-C-reducible.

There exists a symmetric Finsler tensor

field Aij fulfilling Ai0 = 0, and Cijk is

represented in the form [96] when

applied to a Finsler space of dimension n,

greater than two.

4 Result Analysis

The class of Finsler spaces with (, )-

metric, also known as Randers spaces,

was developed by physicist G. Randers

and is a significant subclass of Finsler

spaces. The idea of (, )-metric was

developed by Matsumoto [100]. Despite

being relatively new, the study of Finsler

spaces with (, )- metre is an essential

component of Finsler Geometry and its

applications.

[100] When L is a positively

homogeneous function L (x, y) = p aij

(x)y iy j and (x, y) = bi(x)y i of first

degree in two variables, such that the

Finsler metric F: TM R is given by F 2

(x, y) = L (x, y), where is Riemannian

metric on M and is a differential 1-form

M. The following is how a (, )-metric is

written:

where = (s) is an open interval (b0, b0)

C positive function. The following

formula defines the norm x of with

regard to

F must be defined by meeting the

requirement that x b0 for every x M.

Additionally, we define certain

significant Finsler spaces with their

specified names using the (, )-metric.

[54] The term "Randers metric" refers to

a Finsler metric F = + where 2 = aijy i y
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j is Riemannian metric (gravitational

field) and = bi(x)y i is 1-form

(electromagnetic field) with (x) = p an ij

(x)bi(x)bj (x) 1. Randers [124]

introduced the Rander's metric. Ingarden

[58], who gave it the term Randers

metric in the beginning, utilised it up in

the theory of the electron microscope.

[54] If and only if aij bibj is positive-

definite, provided that aij is positive-

definite, a Randers metric F = + is

positive valued.

[95] The space F n and its Finsler metric

are referred to as the Kropina space. The

Kropina metric is defined as F = 2,

where and are as previously mentioned.

The Kropina metric was initially

introduced by Berwald [21] in relation

to a two-dimensional Finsler space with

rectilinear extremal. Kropina [67]

conducted more research on it. It should

be noted that although Kropina is not a

standard Finsler metric, Randers is.

[67] If F(x, y) = m+1 m, (m = 0, 1), the

Finsler fundamental function F(x, y) is

known as the generalised Kropina metric,

and the Finsler space produced by this

metric is known as a generalised m-

Kropina space. [97] The slope of the

earth's surface, represented by the graph

of the function z = f(x, y), is thought to

be a basic two-dimensional Finsler space.

Here, f(x, y) is a differential form and x

is the well-known convinced

Riemannian metric.

5 Conclusion

A summary of the in-depth investigation

on certain prospective issues in the area

of Finsler space with some (, )-metrics is

provided in this thesis. The

aforementioned goals were successfully

attained during the study process and

within the allotted time period. The

study of conformal modifications in AP-

geometry is covered in Chapter 1. We

learn about some brand-new

conformally invariant tensor fields that

are represented in terms of an AP-

space's Weitzenbock and Levi-Civita

connections. We demonstrate that the

curvature tensors of artificial conformal

connections are these conformal

invariants. We think it's feasible to

physically comprehend the resulting
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geometric objects. The primary findings

of this chapter have been published in

the "International Journal of Geometric

Methods in Modern Physics" Vol. 15

(2018) 1850012. DOI:

10.1142/S0219887818500123. arXiv:

1604.00474 [math.DG].
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