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Abstract-The present thesis delves into
the integration of alchemical free energy
approaches (AFE) with machine-learning
(ML) techniques to augment computer-
aided drug discovery (CADD). The
primary focus of the work is to analyze the
potential synergies that can be attained
between various components. The present
study postulates that while individual
machine learning (ML) and augmented
feature engineering (AFE) techniques in
computer-aided drug design (CADD) hold
considerable promise, their integration in a
way that optimizes the strengths of each
component could yield added benefits.

The utilization of physics-based AFE
calculations has emerged as a highly
accurate and precise sub-kcal·mol−1
approach for forecasting the binding
affinities of ligand-protein interactions.
This has resulted in their widespread
adoption in supporting drug design
workflow projects. The rapid development
of data-driven machine learning
approaches can be attributed to the
exponential expansion in computer
hardware capabilities. However, it is worth
noting that these approaches still exhibit
lower accuracy levels compared to
experimental binding affinities when it
comes to drug discovery. The former
approach employs statistical mechanics,
whereas the latter involves signal
interpolation from extensive training data
regions. The thesis will commence with a

historical and theoretical introduction to
drug development, AFE calculations, and
ML approaches. Subsequently, it will
present several investigations that
substantiate the aforementioned hypothesis
at various stages in the AFE process.

Initially, precise values of hydration free
energies are computed through the
employment of AFE and ML
methodologies. After being trained on a
section of the FreeSolv database, the
hybrid AFE/ML technique demonstrated
superior performance compared to the
majority of SAMPL4 submissions. It
seems that the utilization of AFE/ML may
offer certain benefits over conducting
independent AFE computations, such as
the possibility of necessitating a reduced
training set size. Correction terms derived
from machine learning can also be applied
to related AFE simulation methods. This
approach has the potential to efficiently
improve AFE calculations and pinpoint
specific compounds that would derive the
greatest advantage from tailored force field
parameterization.

Furthermore, research has been initiated on
the generation of AFE networks via data
analysis. Practitioners must exercise
caution while conducting AFE calculations
by giving due consideration to the
amalgamation of alchemical
transformations among ligands in
congeneric series. AFE networks refer to a
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set of edges that are associated with AFE
computations for all ligands, also known
as nodes. It seems that there could be some
issues related to network configurations
that may pose challenges during the AFE
setup phase. These challenges could
potentially affect the scalability and
transferability of the AFE software across
various platforms.

The methodology is dependent on the
reliability of AFE transformation estimates
provided by experts, despite the automated
construction of the AFE network. The
present document presents a novel data-
driven approach based on a graph siamese
neural network, which serves as an
alternative to the current state-of-the-art
methods. The AFE ML study employs
RBFE-Space, a dataset that has been
recently developed. The methodology
employed in this thesis showcases
noteworthy enhancements in the
performance of AFE network generation,
through the utilization of cutting-edge
techniques. The RBFE-Space platform is a
versatile and open-source solution that
enables seamless integration with other
AFE applications. This facilitates the
transfer of the network generator,
enhancing overall efficiency. The deep
learning model represents the initial
reliable machine learning predictor of AFE
transformation reliabilities.

The reliability of AFE computations
decreases for transformations involving
more than 5 heavy atoms. This study
examines the efficacy of performing
individual transformations of running
charge, Van der Waals, and bond
parameters with variable allocation per
step, as opposed to the standard practice of
transforming all parameters in a single step
in most AFE workflows. The MultiStep
protocol is more advantageous for the
bound leg as compared to the one-step

("SoftCore") approach, whereas the free
leg does not exhibit any such benefits.
Based on Cresset's additional research, it
has been determined that the Softcore
methodology and the MultiStep technique
offer comparable benefits. This study
emphasizes the advantages of analyzing a
First Episode Psychosis (FEP) approach
and comparing it with an alternative
strategy.

1.Introduction

The introductory section of this thesis aims
to provide the reader with the necessary
foundational information to effectively
analyze the research presented in the
following chapters. Despite making an
attempt to incorporate a substantial amount
of theoretical backing within the
constraints of conciseness, it is
recommended to pursue additional
literature, particularly when it pertains to
the subject matter at hand.

The introduction is organized in a top-
down manner, beginning with an overview
of the pharmaceutical drug discovery
pipeline and the significance of computer-
aided drug design in this process. This is
followed by a discussion of the
fundamental theoretical principles
underlying the binding of ligands to
proteins. Subsequently, a conclusion will
be presented to provide a comprehensive
overview of the outcomes derived from the
research conducted in the thesis.
Subsequently, a comprehensive
introduction to molecular simulation is
provided, succeeded by an analysis of its
correlation with alchemical free energy
calculations. In summary, the present study
offers an exposition of the theoretical
underpinnings of machine learning, as
applied to the domain of computer-assisted
drug design.
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A. The contemporary
pharmaceutical research and
development environment

Finding new ways to treat diseases is
essential to expanding the field of global
healthcare and getting closer to the
ultimate aim of eradicating sickness
altogether. An illness's phenotype may be
improved by administering a medicine that
interacts with a therapeutic target in a way
that alters the target's biological function,
which is often the main goal of a drug
discovery effort. The process of
developing new medicines is lengthy and
expensive. As a consequence of massive
international efforts to identify new
medications, several different classes of
medicinal agents have been produced.
Small-molecule inhibitors, monoclonal
antibodies, and vaccines are all examples
of this kind of treatment. The research is
being conducted in both a university
setting and a business one.3 It is important
to highlight that the next parts of this
introduction will not go into other
categories of therapeutic agents, since the
focus of this thesis is restricted to the
research of small-molecule medications.
Drug discovery will hereafter be used to
refer to the search for small-molecule
medicines.

Drug development is notoriously
expensive, both monetarily and in terms of
time invested. Some estimates put the cost
of developing a new medication at above
£1 billion. Current estimates place that
figure between £0.3 billion and £0.8
billion. Researching a new drug may take
anywhere from ten to fifteen years, which
is a big issue that might hold down
pharmaceutical campaigns. The
aforementioned span of time begins with
the launch of a preclinical program and
ends when a pharmaceutical product is
ready for widespread commercial

distribution. The estimates made above do
not take into consideration basic research
into the processes causing the illness
phenotype. Many longitudinal studies span
many decades and include numerous
participants, most of whom work in
academia. The costs associated with these
methods are difficult to predict.

Multiple variables contribute to the
difficulty of this procedure. The meat of
the issue is that it's difficult to create a
drug with desirable effects and minimal
side effects (in terms of pharmacokinetics,
dynamics, and toxicity, among other
things). If a medicine has the potential for
mass production and has the desired
therapeutic effect, we may say that it is
effective. Recent systematic estimates
suggest a potential rate of up to 86.2%
across a sample of 5764 unique
pharmaceutical research firms,
demonstrating the prevalence of failure is
high (and according to the particular
characteristics of the sickness).

B. The current status of drug
development and research in the
pharmaceutical industry

The traditional model of the
pharmaceutical pipeline (refer to figure 1.1)
consists of a series of discrete steps that
function as a system, taking in molecular
candidates and producing marketable
drugs. In the early phases of drug
development, a large number of molecular
candidates, typically between 103 and 109,
are screened using experimental and
computational methods to find a lead
chemical. A chemical entity that has
achieved the desired pharmacological or
biological effects but requires additional
modifications in its structural composition
to increase its binding affinity towards the
therapeutic target or to improve its
metabolic and toxicological profiles is
considered a lead compound in the
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scientific community. The first step in the
drug discovery process is to zero in on a
viable therapeutic target, after which the
creation of a lead molecule comes into
play. After the lead drug has been
identified, it is subjected to in vivo animal
experiments to assess its physiologic
response prior to human studies, which are

known as pre-clinical trials. Next, three
consecutive clinical studies are performed
to evaluate (1) safety, (2) indication
effectiveness, and (3) population-level
efficacy. After these tests are complete, the
medicine may be submitted for regulatory
clearance and put on the market. The
estimated rates of attrition in the first,
second, and third stages of a clinical study
are 86.2%, 79%, and 41%, respectively.
The bulk of the expenditures associated
with drug discovery are tied to the massive
infrastructures of experimentation required
for Phases 1-3 of clinical trials. For this
reason, it's crucial that clinical applicants
be of a high calibre to increase their
chances of advancing through the various
stages of the clinical trial. For this reason,

it is clear that methods that help drug
researchers save time and money while
still producing higher-quality drug
candidates may have a significant effect on
the discovery of new therapeutics.

Fig.1: This funnel-like diagram represents
the drug discovery pipeline, a frequent
metaphor for depicting the whole process
of developing a medicine for commercial
release. Each coloured circle denotes a
potential new medicine, with only one
drug making it to market at the end of the
funnel.

C. The present study involves the
computation of relative binding free
energy

Free energy calculations using molecular
dynamics (MD) simulations are referred to
as alchemical free energy (AFE)
computations. Alchemy is a frequent term
for the practice of attempting to achieve
results via physical rather than chemical
means. These equations are used to
determine the Gibbs free energy shift for a
certain (alchemical) process with NPT
apparatuses. Estimating the free energy
involved in the binding of tiny molecules
to a membrane and computing the change
in free energy due to a conformational
shift that involves overcoming a high
energy barrier are both possible using the
AFE calculations. The free energy change
associated with a binding mutation in a
protein residue may also be calculated in
this way. In what follows, we'll discuss
how to calculate the RBFE, or relative
binding free energy. In this introductory
chapter, we use the phrase "RBFE
calculations," sometimes known as "de-
calculations."

The rate of disso- ciation, which can be on
the microsecond timescale even for
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millimolar binders97 and reaches the
microsecond to second timescale for a
typical drug103,104, typically dominates
the computational cost of these
calculations, which have been used to
estimate binding affinities96,97 or to gain
insights into the binding pathways and
kinetics of receptor-ligand systems98-102.
Software programs for molecular
dynamics vary in how efficiently they do
computations based on system size and
other simulation parameters. These
bundles may accomplish hundreds of
ns/day with the help of high-end GPUs.
However, this computational performance
is neither attractive nor relevant, and hence
is impractical for use in pharmaceutical
drug development. The binding free
energy may also be determined by
generating potential of mean force profiles
along a reaction coordinate, which is an
alternative method. These methods,
however, need knowledge of a high-
probability binding route in advance,
which is not always easy to come by,
especially in the prospective settings that
are so common in drug development.

A decade into the 21st century, after years
of development beginning in the 1980s,
RBFE calculations became the first widely
used method for reliably predicting ligand
binding affinities at a high enough level to
support hit-to-lead and lead-optimization
campaigns in medicinal chemistry. 111
Since then, the field has advanced to the
point where extensive calculations (of the
order of hundreds of compounds) can be
run in the span of only a few days (given
sufficient hardware), allowing
computational chemists to provide
medicinal chemists with accurate
predictions in support of SAR studies at a
much faster pace than synthesising each
compound individually.

Initial Steps Alchemical transformations
are used in the RBFE simulations to
simulate ligand interactions. For a
particular protein target with many ligands,
this entails picking a collection of ligand
pairings. These sets may be very small
(five to fifteen) for benchmarking reasons,
or they may be rather big (fifteen to one
hundred) for lead-optimization initiatives.
The RBFE software packages have a
number of different methods for
recommending the transformations to be
calculated (see Figure 1.4A).113,114 As
certain transformations are more likely to
be trustworthy than others, perturbation
networks are often used to display the
collection of edges suggested for a series
of ligands, allowing users to
include/exclude transfor- mations
depending on user experience. For large-
scale projects with several ligands, a star-
shaped network is often used, with the
reference ligand being the lead molecule
currently undergoing optimization. Figure
1.4B shows that at this point in the process,
the force field assignment is performed on
both the ligands and proteins. If you need
more information, look at Paragraph 1.4.2.

This is the manufacturing step. The
transformation is often divided into
numerous bins using a decoupling
parameter, which is based on the definition
of molecular transformation among the
members of each ligand transformation.
Subsequently, the parameters are modified
in a bin-wise method, with more disturbed
parameters being stored in each bin. Each
intermediate system consists of atomistic
parameters that have been gradually
changed from the endpoints, which include
the atomistic parameters of both ligand
ends. Using a specific molecular dynamics
engine, these windows are simulated one
at a time (figure 1.4C), a procedure that
often accounts for the bulk of the walltime
needed for RBFE simulations. The 1.5.1
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step simulates both the tied and unbound
legs. To further facilitate real-time
investigation of hysteresis in both
directions, it is preferable to do
bidirectional edge simulations that include
both A B and B A. By bringing edge
hystereses closer to 0 kcalmol1, certain
RBFE implementations modify Gbound
predictions. Several methods exist for
graphically representing the atomic change
between two ligand terminals. Single and
dual techniques are particularly common.
The former includes as little indirect
conversion as feasible, whereas the latter
involves just conversion to and from non-
interacting dummy atoms. Computing
procedures associated with topology.

In the scientific literature, this
phenomenon is referred to as binding free
energy or relative free energy perturbation
(FEP).

The phase in which an estimate of free
energy is made. After simulations have
been run, an estimate of the relative free
energy across the decoupling parameter is
performed using estimators such as
Thermodynamic Integration (TI) or the
more modern Multistate Bennett
Acceptance Ratio (MBAR) for the

perturbation in both the bound and free

Fig.2 :This research describes RBFE
calculating campaign procedure.
Homology modelling (A), crystallography

(B), and machine learning (C) provide
three-dimensional protein structure
references. Docking programs manually
fill a protein structure's binding pocket
with n ligands. A perturbation network
determines the series' ligand perturbations.
Each edge's -windows are transformed.
The reference protein and ligand
transformations are solvated together.
GPUs run simulations. The relative free
energy of binding during transformation
may be estimated from the -window
simulations. After finishing the
perturbation network edges, the pairwise -
Gbind values are analyzed to determine
each ligand's compared to a reference.
Gbind predictions per ligand may be used
to benchmark experimental results or drive
lead optimization.

phase. These estimators are used to
calculate the relative free energy across the
decoupling parameter. need a theoretical
framework that encompasses this estimate
in a more thorough manner. At this point in
the RBFE program, estimates of the
pairwise relative free energy of binding
(Gbound) are being generated for all of the
proposed changes.

The stage that deals with analysis

The usage of the initial perturbation
network is what is used to accomplish the
task of determining the Gbound values for
each ligand. In this procedure, it is
common practice to make modifications
for cycle closures. This is because, in line
with the law of conservation of energy, it is
anticipated that a cycle of ligands' free
energies will have a net energy of 0
kcalmol1 at the end of the cycle. The
execution of calculations for both
orientations of an edge and then changing
the forward and backward free energy
estimations associated with the cycle in
order to obtain a net energy of 0 kcalmol1
is a common method for addressing this
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problem. The weighting of edge
predictions is determined by a measure of
uncertainty, such as the standard error of
the mean free energy prediction across
replicates or an uncertainty estimate
derived from bootstrapped subsampling of
the simulation data. The estimation of
Gbind values is typically accomplished
through the use of a weighted-least squares
method. The per-ligand Gbound values are
calculated by using a reference ligand to
determine the value of another of the
ligands. The previously indicated data may
be used for comparison analysis with
experimental binding measurements that
have been standardized to the same
reference ligand, which makes it possible
to evaluate the process of the RBFE.

2. Using Alchemical Free
Energy/Machine Learning to Calculate
Hydration Free Energies

FEP/MLmodelling

The current technique offers a regression
model that matches the error an alchemical
calculation makes for a given molecule A,
defined as:

Goffset(A) = GEXP (A) − GFEP (A), (2.1).

where GFEP (A) is molecule A's al-
chemical hydration free energy and GEXP
(A) is its experimental one. Five-fold
cross-validation across 10 repetitions was
used to fit machine-learning models to a
training set with prescribed descriptors,
resulting in a population Npop of 50
trained models (see methods). All Npop
regression models forecast their own G of
fset value. Our offset estimator is the
arithmetic mean of these offset values, and
its accuracy is measured by its standard
deviation. Thus, a corrected hydration free
energy is:

GFEP/ML(A) = GFEP (A) + G of fset(A)
(2.2).

and propagating alchemical and ML term
statistical mistakes determines the
accuracy of the GFEP/ML(A) estimation.

Data collection

The FreeSolv database, version 0.52, was
made available at
https://github.com/MobleyLab/FreeSolv. It
consists of 642 small, neutral molecules.
The GROMACS code used to determine
absolute hydration free energy is included
in the database.193 In their article, Ramos
Matos et al. describe the FEP method. 195
GAFF196 force field, AM1-BCC197
partial charges, and the TIP3P water model
were employed in FreeSolv calculations.

All chemicals (n=47) used in the SAMPL4
blinded competition and later added to the
FreeSolv database after the
aforementioned challenge were removed
from the dataset to create the
FreeSolvSAMPL4 set.A total of 200
compounds were culled from this group by
searching for "SAMPL4 Guthrie" in the
database's overview text file's
experimental reference column. Mobley
6309289, Mobley 3395921, Mobley
6739648, Mobley 2607611, Mobley
637522, and Mobley 172879 are the six
molecules that were purposefully added to
the test set by hand. These molecules were
included in the SAMPL4 challenge, but
the relevant keyword wasn't assigned to
them when the FreeSolv database was
updated to version 0.52. A total of 595
molecules were used to form the training
set. This section will only describe the
training set, although all data modification
is considered comparable between the
training and test sets unless otherwise
stated. Python 3.7.4 was used to do the
necessary data manipulations.

3. Results & discussion

A. Optimization of protocol on the
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training set
The results of the investigation showed
that hyperparameters had a major impact
on the ML models' validation accuracy.
The relatively small size of the training
dataset (595 data points) is likely to blame
for this phenomena. The research used a
hyperparameter optimization approach,
which, as shown in Table 2.1, involves
adjusting hyperparameters using Bayesian
optimization with Gaussian process
regression. The relevant approach
encompasses noisy and expensive machine
learning functions and performs a search
inside the hyperparameter space. After 50
iterations, the hyperparameter
configuration with the lowest validation
error is saved with the trained model. After
around 30 iterations, the SVM, RF, and
DNN models all showed signs of
convergence. It is clear that MLR does not
have any tuning-necessary
hyperparameters in this situation. As a
result, there is no change to the model
trained during each SKOPT call, hence
there is no change to the validation error
either.

All machine learning algorithm
hyperparameters are included in Table 1 of
this research. SVM, RF, DNN, and MLR
are all examples of machine learning
models. The configurations of a machine
learning model are calculated by
multiplying its hyperparameter values.

ML
mode

l

Hyperparamete
r

Range Total
configuratio

ns
SVM C 1e-3, 1e-2, ...,

1e+2
216

ϵ 1e-3, 1e-2, ...,
1e+2

Γ 1e-3, 1e-2, ...,
1e+2

RF NumEstimators 1, 2, ..., 1000 9e+4
MaxDepth 1, 2, ..., 5
MinSamplesSplit 2, 3, ..., 10
Bootstrap True, False

DNN ActivationFn logistic, tanh,
relu

3.1e+6

Solver lbfgs, sgd, adam
(100,50),(50,20)
,

Layers* (100,100,50),
(100,50,20),
(50,20,5)

Adam-β1 0.1, 0.2, ..., 0.99
Adam-β2 0.1, 0.2, ..., 0.99
Adam-ϵ 10e-8, 10e-7, ...,

10e-1
MLR No

hyperparameters
to tune.

1

The findings of the study indicate that the
training protocol reveals a comparatively
lower degree of fitness of random forests
(RF) and multiple linear regressions (MLR)
to the training set in comparison to support
vector machines (SVM) and deep neural
networks (DNN) protocols, as illustrated
in Figure 2.2. This outcome is anticipated
in the context of Multiple Linear

Regression

Fig.3: This research optimizes
hyperparameters of machine-learning
models fitted on two features, namely
Goffset (top row) and G (bottom row), for
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different kinds of features calculated for
compounds in the FreeSolv database. The
text calls trained models FEP/ML and
pure-ML (ML). The graphic shows the link
between hyperparameter calls and training
validation mean unsigned error global
minima in kcal mol−1. Shaded areas
represent the standard deviation of 10
repetitions. Multiple linear regression lines
surpass the error range.

(MLR) due to the comparatively
uncomplicated nature of the model. Whilst
the Random Forest algorithm exhibits
greater complexity, it is predominantly
tailored towards classification tasks as
opposed to regression tasks, owing to its
reliance on decision trees. This may
account for its tendency to underfit. The
present investigation incorporates the
algorithm as a means of control.

Various feature sets were employed to
determine effective encodings for
describing ∆Goffset. A ubiquitous pattern
in the performance of feature sets can be
discerned among machine learning models.
The MolProps and combinatorial feature
sets, which include fingerprints appended
to MolProps, exhibit a superior fit to the
training set compared to standalone
fingerprints such as APFP, TOPOL, and
ECFP6. Conversely, X-NOISE performs
poorly, as anticipated, given that this
feature set is derived from random data.

Due to the superior performance of
standalone MolProps in comparison to
standalone fingerprints, it is probable that
the combined feature sets primarily derive
their advantages from the more prognostic
MolProps component. The empirical
evidence indicates that MolProps exhibits
superior performance in comparison to
other feature sets, implying that certain
descriptors (such as molecular weight and

polar surface area) incorporated in
MolProps exhibit a strong correlation with
free energies of hydration. Our empirical
findings suggest that the MolProps feature
set exhibits superior performance
compared to other feature sets in
predicting the hydration free energy (∆G)
through the use of pure machine learning
models.

4. Conclusions

The present study has exhibited the
feasibility of integrating physics-based free
energy perturbation (FEP) techniques with
data-oriented machine learning approaches
for the purpose of forecasting the absolute
hydration free energies of minor molecular
species. One notable benefit in comparison
to FEP is the ability to enhance prediction
precision without the need for laborious
forcefield parameterization endeavours.
The FEP/ML methodology exhibits
superior performance in comparison to
FEP when considering the training set size,
despite both being machine learning
techniques. The aforementioned
observation holds great importance as it
suggests the feasibility of generating
predictions for a novel dataset in the
absence of any preliminary experimental
data, and subsequently transitioning to a
Free Energy Perturbation/Machine
Learning methodology upon the
acquisition of a satisfactory quantity of
empirical data points. The aforementioned
benefit arises due to the utilization of the
FEP/ML methodology, wherein the ML
models are solely required to acquire the
ability to rectify inaccuracies in the FEP
computations. Conversely, in a purely ML-
based approach, the models must acquire
knowledge pertaining to the physics of
hydration. FEP/ML possesses an additional
benefit in that it exhibits a comparable
level of precision in predicting the
hydration free energies of individual
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compounds as FEP calculations.
Conversely, ML-based predictions
generated by ensembles of identical
models exhibit a more notable degree of
variability. Through a retrospective
analysis of all submissions made to
SAMPL4, it has been observed that the
accuracy improvements achieved in Free
Energy Perturbation/Machine Learning
(FEP/ML) are significant enough to
elevate a FEP protocol with a mid-level
ranking to a top-ranked submission.
Moreover, the enhancements in accuracy
are not restricted to a solitary simulation
protocol, and several associated Free
Energy Perturbation (FEP) methodologies
reap the rewards of these rectification
factors. This phenomenon is possibly
attributable to the observation that various
forcefields and software exhibit
correlations among their outliers in terms
of predicted hydration free energies.
159,216 It is anticipated that the efficacy
of the correction terms will diminish as the
simulation protocol deviates further from
the one employed to produce the training
set.
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