&

IJTE

TECHNO-ENGINEERING

Multilayer and Multi Modal Fusion of Deep Neural Networks for
Video Classification

BOGGARAPU SRINIVASULU
Research Scholar

Department of Computer Science and Enigineering
JS UNIVERSITY, Shikohabad ,Uttar Pradesh.

Dr. K. VIJAYA BHASKAR
Associate Professor
Department of Computer Science and Enigineering
JS UNIVERSITY, Shikohabad ,Uttar Pradesh.

Abstract: This paper presents a novel framework to combine multi- ple layers and modalities of deep
neural networks for video classification. We first propose a multilayer strategy to simultaneously capture
a variety of levels of abstraction and invariance in a network, where the convolutional and fully
connected layers are effectively represented by the proposed feature aggregation methods. We further
introduce a multi modal scheme that includes four highly complementary modalities to extract diverse
static and dynamic cues at multiple temporal scales. In particular, for modeling the long-term temporal
information, we propose a new structure, FC-RNN, to effectively transform pre-trained fully connected
layers into recurrent layers. A robust boosting model is then introduced to optimize the fusion of
multiple lay- ers and modalities in a unified way. In the extensive experiments, we achieve state-of-the-
art results on two public benchmark datasets: UCF101 and HMDBS5I1.
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I. INTRODUCTION

Content based video classification is
fundamental to intelligent video analytics
including automatic categorizing, searching,

indexing, segmentation, and retrieval of videos. It
has been applied to a wide range of real-word
applications, for instance, surveillance event
detection, semantic indexing, gesture control, etc.
It is a challenging task to recognize unconstrained
videos because 1) an appropriate video
representation can be task-dependent, e.g., coarse
“swim” vs. “run”) and fine-grained (“walk” vs.
“run”) categorizations; 2) there may be multiple
streams of information that need to be taken into
account, such as actions, objects, scenes, and so
forth; 3) there are large intra-class variations,
which arise from diverse viewpoints, occlusions

and back- grounds. As the core information of
videos, visual cues pro- vide the most significant
information for video classification. Most
traditional methods rely on the bag-of-visual-
words (BOV) representation which consists of
computing and ag- gregating visual features. A
variety of local and global visual features have
been proposed, for instance, GIST and SIFT can
be used to capture static information in spatial
frames, while STIP and improved dense
trajectories (iDT) are widely employed to compute
both appearance and motion cues in videos.

Recently there is a growing trend to learn robust
feature representations with deep neural networks
for various tasks such as image classification,
object detection , natu- ral language processing,
and speech recognition. As one of the most
successful network architectures, the recent surge
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of convolutional neural networks (CNN) has
encour- aged a number of methods to employ
CNN for video classification. Karparthy et al.
made the first attempt to use a buffer of video
frames as input to networks, however, the results
were inferior to those of the best hand-engineered
features. However, these methods focus on short
or mid-term information as feature representations
are learned in short-time windows. This is
insufficient for video classification since complex
events are better described by leveraging the
temporal evolution of short-term contents. In
order to capture long-term temporal clues in
videos, re- current neural networks (RNN) were
applied to explicitly model videos as an ordered
sequence of frames.

CNN based video classification algorithms
typically make predictions using the softmax
scores or, alternatively, they use the last fully
connected layer as a feature representation because
CNN hierarchically computes abstract and
invariant representations of the inputs. However,
leveraging information across multiple levels in a
network has proven beneficial for several tasks
such as natural scene recognition, object

segmentation and optical flow computation. This
is somewhat expected since convolutional layers
retain the spatial information compared to fully
connected layers. For video classification, we
argue that appropriate levels of abstraction and
invariance in CNN for video representation are
also task- and class-dependent.
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Figure 1: An overview of the proposed multilayer and
multimodal fusion framework for video classification.

We use four modalities to extract highly
complementary information across multiple
temporal scales. For each single modality,

discriminative representations are computed for
convolutional and fully connected layers. We
employ an effective boosting model to fuse the
multiple layers and modalities. Box colors are
encoded according to different networks: 2D-
CNN and 3D-CNN with and without RNN. We
propose FC-RNN to model long-term temporal
information rather than using the standard RNN
structure. Distinguishing “soccer game” and
“basketball game” requires high-level
representations to model global scene statistics.
However, classification of “playing guitar” and
“playing vio- lin” demands fine-scale features to
capture subtle appearance and motion features.
Therefore, leveraging the multilayer abstractions is
able to simplify video classification.

Although a significant progress in recent years
has been achieved in the development of feature
learning by deep neural networks , it is clear that
none of the features have the same discriminative
capability over all classes. For example, videos of
“wedding ceremony” are strongly as- sociated
with static scenes and objects, while “kissing” is
more related to dynamic motions. It is therefore
widely accepted to adaptively combine a set of
complementary features rather than using a single
feature for all classes. Si- monyan et al. [36]
proposed the two-stream networks based on 2D-
CNN to explicitly incorporate motion information
from optical flow to complement the static per-
frame in- formation. A simple late fusion was
adopted to combine the soft max scores of two
networks by either averaging or with a linear
classifier. This method has been widely utilized
for video analysis [8, 46] thanks to the two
complementary modalities and outstanding
performance. Nevertheless, a question of which
robust modalities to exploit and how to effectively
perform multimodal fusion still remains open for
video classification.

In this paper, we propose a multilayer and
multimodal fusion framework of deep neural
networks for video classification. The multilayer
strategy can simultaneously capture a variety of
levels of abstractions in a single network, which is
able to adapt from coarse- to fine-grained
categorizations. Instead of wusing only two
modalities as in the two-stream networks [36], we

676



&

IJTE

TECHNO-ENGINEERING

propose to use four highly complementary
modalities in the multimodal scheme, i.e., 2D-
CNN on a single spatial frame and optical flow
image as well as 3D- CNN on a short clip of
spatial frames and optical flow images. They not
only effectively harness the static objects and
dynamic motions in videos but also extensively
exploit the multiple temporal clues. As for the
fusion of multiple layers and modalities, we adopt
a powerful boosting model to learn the optimal
combination of them.

Fig. 1 illustrates the overview of our proposed
multilayer and multimodal fusion framework.
Given an input video, the four modalities are used
to extract complementary in- formation at short
and mid-term temporal scales. Instead of using the
standard RNN structure, we propose FC-RNN to
model the long-term temporal evolution across a
whole video. FC-RNN takes advantage of pre-
trained networks to transform the pre-trained fully
connected (fc) layers into recurrent layers. In the
following, we use 2D-CNN-SF, 2D- CNN-OF,
3D-CNN-SF, 3D-CNN-OF to indicate 2D-CNN
and 3D-CNN on spatial frames and optical flow,
respectively. For each individual network, an
improved Fisher vector (iFV) is proposed to
represent convolutional (conv) layers and an
explicit feature map is used to represent fc lay- ers.
We then employ a robust boosting model to learn
the optimal combination of multiple layers and
modalities. The main contributions of this paper
are summarized as follows.

® We present a multilayer fusion strategy to
capture mul- tiple levels of abstraction and
invariance in a single network. We propose to
use iFV and explicit feature map to represent
features of conv and fc layers.

® We introduce a multimodal fusion scheme to
incorpo- rate the four highly complementary
modalities to ex- tract static and dynamic cues
from multiple temporal scales. In particular
for the long-term temporal model- ing, we

propose FC-RNN to  preserve the
generalization  properties of  pre-trained
networks.

® We adopt an effective boosting model for video
classi- fication by fusing multiple layers and
modalities in an optimal and unified way.

® In the extensive experiments, our method
achieves su- perior results on the well-known
UCF101 and HMDBS51 benchmarks.

II. RELATED WORK

Videos have been studied by the
multimedia community for decades. Over the
years a variety of problems like mul- timedia
event recounting, surveillance event detection, ac-
tion search, and many more have been proposed.
A large family of these studies is about video
classification. Conventional video classification
systems hinge on extraction of local features,
which have been largely advanced in both
detection and description. Local features can be
densely sampled or selected by maximizing
specific saliency functions. Laptev proposed STIP
to detect sparse space-time interest points by
extending the 2D Harris corner detector into 3D.
Wang et al. introduced the improved dense
trajectories (iDT) to densely sample and track
interest points from multiple spatial scales, where
each tracked interest point generates a set of
descriptors to represent shape and motion. Many
successful video classification systems use iDT
with the motion boundary histogram (MBH)
descriptor which is the gradient of horizontal and
vertical components of optical flow. It is widely
recognized as the state-of-the-art feature for video
analysis.

After local feature extraction, a number of
coding tech- niques have been proposed for feature
quantization, e.g., sparse coding and locality-
constrained linear coding . Then average pooling
and max pooling are normally used to aggregate
statistics from local features. Several more
advanced coding methods, e.g., Fisher vector (FV)
and vector of locally aggregated descriptors
(VLAD) , have emerged to reserve high order
statistics of local features and achieve noticeably
better performance. However, these methods
obviously incur the loss of spatio-temporal order
of local features. Extensions to the completely
orderless aggregation methods include
spatiotemporal pyramid and super sparse coding
vector . The graphical models, such as hidden
Markov model (HMM) and conditional random
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fields (CRF), are also popular methods to explore
the long- term temporal information in videos.

The trajectory-pooled deep convolutional
descriptor (TDD) was presented in to incorporate
videos’ temporal nature by using trajectory
constrained sampling and pooling. This method
shares the advantages of both hand-engineered
fea- tures and deep-learned representations. While
the improved networks using RNN can model
long-term  temporal order, our proposed
multimodal method provides multi-temporal
scales with short, mid, and long-term time
contexts.

Figure 2: Illustration of multilayer representation and
fusion.

The proposed feature aggregation methods are
used to represent fully connected and
convolutional layers over time. The introduced
boosting algorithm is applied to combine the
representations from multiple layers.

III. MULTI LAYER REPRESENTATIONS

As a hierarchical feed-forward architecture,
CNN progressively computes abstract and
invariant representations of inputs. Recognition
algorithms based on CNN often make predictions
based on SoftMax scores or the last layer which is
the most resistant to variables in the preceding
layers. How ever, we argue that various
abstractions such as poses, articulations, parts,
objects, etc, learned in the intermediate lay- ers
can provide multiple semantics from fine-scale to
global descriptions for video classification.
Moreover, we propose a concept of convlet to
utilize the spatial information reserved in conv
layers to refine the final feature representation. In
this section, we describe the detailed procedures to
compute multilayer representations as illustrated in
Fig. 2.

A. Improved Fisher Vector by Convlet

Recent work on visualizing and understanding
CNN re- veals that conv layers demonstrate many
intuitively desir- able properties such as strong
grouping within each feature map and
exaggeration of discriminative parts of objects.

Therefore, a set of appropriate levels of
compositionality in conv layers are able to supply
plenty of fine-scale information to the category-
level semantics. Meanwhile, the features of
multiple layers come for free because they are
already ex- tracted during the forward pass.
Furthermore, compared to fc layers, conv layers
contain the spatial information. It can be applied
to adaptive pooling and feature refinement because
the discriminative information for video classifica-
tion is often unevenly distributed in spatial domain.

IV. FC-RNN STRUCTURE

Most networks hinge on short or mid-term
contents such as a single frame or a buffer of
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frames where features are independently extracted
for video classification. We believe that there are
important connections between frames and the
entire video is supposed to be processed as an
ordered sequence. To address this intuition, we
propose a simple and effective structure, FC-RNN,
to transform a network pre-trained on separate
frames or clips to deal with video as a whole
sequence.

3D-CNN

learn the specific order of videos in the training
set, there- fore we randomly permute the order of
training videos for each epoch. This operation
slows down convergence but im- proves
generalization. The regularization term which
forces to learn weights with smaller 12-norm also
helps generalization. With intention of preventing
the gradients from exploding in recurrent layers,
we employ soft gradient clip- ping in the following
way. For each computed gradient g in stochastic
gradient descent (SGD), we check if its 12-norm g
is greater than a pre-defined threshold & = 10. If
that is the case, we rescale the gradientto g g6/ g .
We find that without gradient clipping the
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explosion of gradient val- ues is a critical barrier to
successfully training the networks. To further
improve generalization, we train networks with
drop-out on the outputs of recurrent layers.
During train- ing, we set the outputs of the
recurrent layers to 0 with a probability of p = 0.5,
and scale the activations of other neurons by a
factor of p/(1 — p).

| output |
2
| softmax |
A | output |
ho RNN b il
he = H(Wnf, + Whnhiot + bi) | softmax |
i 4
fc layer Feoay FC-RNN
fo=HWioy, +bs) Fo=H(Wioy, + Winf,_y +by)
t L
| conv layer | | conv layer |
1 1
| input | | input |
Standard RNN FC-RNN

Figure 3: Comparison of standard RNN and FC- RNN.
The variables in red correspond to the parameters that need
to be trained from scratch.

V. MULTIMODAL REPRESENTATIONS

Since the visual information in videos is a
juxtaposition of not only scenes and objects but
also atomic actions evolving over the whole video
sequence, it is favorable to capture and combine
both static appearances and dynamic motions. To
address this challenge we bring the multimodal
approach to model a variety of semantic clues in
multi-temporal scales. Fig. 1 demonstrates the
proposed four modalities with mu- tually highly
complementary information in short, mid, and
long-term temporal contexts.

The two networks operating on spatial frames
(single frame in 2D-CNN-SF and short clip of
frames in 3D-CNN-SF) can capture objects and
scenes that are strongly correlated to certain video
categories, e.g., snow and mountains in Fig. 1
indicate skiing. 2D-CNN-SF is essentially an
image classifi- cation network which can be built
upon the recent advances in large-scale image
recognition methods and datasets. 3D- CNN-SF
selectively attends to both motion and appearance
cues through spatio-temporal convolution and
pooling oper- ations. It encapsulates the mid-term

temporal information as the network’s input is a
short video clip (e.g., 16 spatial frames). The
colorized optical flow maps enable us to reduce
over-fitting and training time by leveraging on the
pre-trained models from large-scale image datasets.
Since the input is a single colorized image, 2D-
CNN-OF captures the fine-scale and short-term
temporal information between a pair of adjacent
frames. 3D-CNN-OF models the high or- der
motion cues such as spatial and temporal
derivatives of optical flow which has been
successfully applied to hand- engineered features
[44]. This modality also encapsulates the mid-term
temporal clues. Similar to 3D-CNN-SF, FC- RNN
is also employed to learn the long-term temporal

= order of 2D-CNN-OF and 3D-CNN-OF.

Outputs of last four layers of each network are
used to represent videos. Special attention is paid
for the mini-batch assembling to deal with varied
video length. We fill consequently all frames of a
video into a mini-batch and fill with another video
if there is still space in the mini-batch. When the
limit of a mini-batch is reached and there are
frames left then we fill them in the next. In the
case there are no more frames to fill into a mini-
batch, we fill them with zeros and these examples
are not used in computation.

VI. EXPERIMENTS

In this section, we extensively evaluate the
proposed mul- tilayer and multimodal fusion
method on the two public benchmark datasets for
video classification: UCF101 and HMDBS51 . In
all experiments, we use LIBLINEAR as the linear
SVM solver. Experimental results show that our
algorithm achieves the state-of-the-art results on
the two benchmarks.

A. Experimental Setup
> Datasets

The UCF101 dataset contains 101 action
classes with large variations in scale, viewpoint,
illumination, camera motion, and cluttered
background. It consists of 13,320 videos in total.
We follow the standard experimental set- ting as
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to use three training and testing splits. In each split,
20% of training data is used as validation set for
boost- ing model selection. The first split of
UCF101 (denoted as UCF101%*) is also used to
evaluate and understand the con- tribution of
individual components. We report the average
accuracy over the three splits as the overall
measurement.

The HMDBS1 dataset is collected from a wide
range of sources from digitized movies to online
videos. It contains 51 categories and 6,766 videos
in total. This dataset includes original videos and
stabilized ones. Our evaluations are based on the
original version. There are 70 videos for training
and 30 videos for testing in each class. We use
40% of training data as validation set to perform
model selection for boosting. We follow the
evaluation protocol defined in to use three training
and testing splits and report the mean accuracy
over the three splits.

» Implementations

We implement the networks of four modalities
in Theano with cuDNN4 on NVIDIA DIGITS
DevBox with four Titan X GPUs. 2D-CNN and
3D-CNN in the experiments are initialized by
VGG16 pre-trained on ImageNet and C3D videos.
For 2D-CNN we skip every second frame and
oper- ate on a single frame . Training frames are
gen- erated by random cropping and flipping video
frames, while for testing, only a central crop with
no flipping is evaluated. Since the two datasets are
of quite different sizes, we apply different learning
rate scheduling. For UCF101, we fine-tune 9
epochs with initial learning rate A =3 10—4 and
divided by 10 after each 4 epochs. For HMDBS51,
we perform fine- tuning for 30 epochs with the
same initial learning rate but divided by 10 after
every 10 epochs. All network parameters that are
not with pre-trained weights are initialized with
random samples drawn from a zero-mean normal
distribution with a standard deviation of 0.01. We
use the frame-wise negative log-likelihood of a
mini-batch as the cost function, which is optimized
by SGD with a momentum of 0.9.

B. Experimental Results

» Evaluation of Feature Aggregations

We first evaluate the performance of iFV to
represent conv layers in different modalities.
Compared to the traditional aggregation methods,
iFV retains high order statistics; in particular, it
adaptively weights the features of a conv layer
according to the associated spatial weights learned
by the proposed convlet. We keep 300 out of 512
components in PCA. For the spatial weight
normalization, we find sigmoid 1is more
discriminative than softmax, e.g., 1FV with
sigmoid outperforms that with softmax by 0.6%
for conv5 layer in 2D-CNN-SF. The sigmoid
function is therefore used in the following
experiments. We set K = 128 Gaussian compo-
nents for both methods so the final feature
dimension is 76.8K. We compare iFV with the
conventional FV ~ in Table 1 where iFV
consistently outperforms FV for conv layers in all
modalities with the improvements ranging from
0.6% to 2.5%. It is observed to be more improved
for conv4 than conv5 probably because of the finer
spatial information preserved in the lower layer.
These improvements clearly show the advantages
of utilizing the spatial discriminability learned by
convlets in conv layers to enhance the feature
representation.

We employ temporal max pooling to aggregate
fc layers, which are further extended by the
explicit feature map to approximate non-linear
kernels. This representation is not only equipped
with additional non-linearity but also bene- fits
from the efficiency of learning and prediction in
linear SVM. We demonstrate the results of fc
layers in 3D-CNN- SF with approximated non-
linearities in Table 2. Both fc6 and fc7 are
transformed to recurrent layers by FC-RNN. We
use 12-norm and z = 3 in explicit feature map so
the extended feature dimension is 28,672. The
baseline method is the linear representation by
temporal max pooling with- out feature mapping.
We evaluate three additive non-linear kernels: y2,
Jensen-Shannon and intersection kernels, which
are widely used in machine learning and computer
vision. All non-linear representations outperform
the linear one, es- pecially the representation with
intersection kernel achieves the best results. We
thus use the intersection non-linearity
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approximation to represent fc layers in the
following experiments.

Modality Layer FV [34] iFVv
2D-CNN-SF conv4 74.2% 76.7%
conv> 79.6% 80.6%
2D-CNN-OF conv4 75.6% 78.1%
06m ~anvi Q1 QoL R RY
L\ = g ﬁ?ﬂﬁ?iﬁg %
= —— RNN-Test-SF
05 ety FC-RNN-Tesl-SF (y
- & =RNN-TrainOF | ' 70
FC-RNN-Train-OF |
0.4 < —e—-RN N-Test-(;Fn Yo
e | FC-RNN-Test-OF
e %
03 2% o L -
Sy 97V to
% "‘“\*9—-—-9-———0—-0—-——038 on
o S 24 —b
0. i R y = .
04 R T ection
o B &LYY LEEY EEEY TP TRy TT7)
1 2 3 4 5 6 7 8 9
tc/ 82.4% 82.9% ¥3.0% 83.2%

Table 2: Comparison of different non-linear approx-
imations to represent fully connected layers in 3D- CNN-SF
on UCF101*.

> Evaluation of FC-RNN

Our method extensively extracts the static and
dynamic information in multi-temporal scales. 2D-
CNN and 3D- CNN on spatial frames and optical
flow images compute features from short-term and
mid-term temporal contexts. FC-RNN is then
employed to model each video as an ordered
sequence of frames or clips to capture the long-
term temporal order. Since FC-RNN maintains the
structure of a pre-trained network to the greatest
extent, it is therefore effective to preserve
important generalization properties of the network
when fine-tuned on a smaller target dataset.
Moreover, FC-RNN achieves higher accuracy and
is faster to converge compared to the standard
RNN. We compare the training and testing
performances of our proposed FC-RNN and the
standard RNN in Fig. 4. To avoid figure clutter,
we demonstrate the comparison for 3D-CNN-SF
and 3D-CNN- OF, similar phenomena is observed
on 2D-CNN-OF as well. FC-RNN is generally
able to alleviate over-fitting and con- verge faster,
e.g., FC-RNN outperforms standard RNN and
LSTM by 3.0% and 2.9% on 3D-CNN-SF. In

comparison to the networks without recurrent
connections, FC-RNN significantly improves the
modalities of 2D-CNN-OF, 3D-CNN- SF and
3D-CNN-OF by 3.3%, 3.2% and 5.1%,
respectively. This is evident to show the benefits
of FC-RNN in modeling the long-term temporal
clues.

Figure 4: Comparison of the proposed FC-RNN and the
standard RNN in training and testing of 3D- CNN-SF and
3D-CNN-OF on UCF101*.

» Evaluation of Multilayer Fusion

Here we evaluate the multilayer fusion on
combining var- ious layers for individual
modalities. Table 3 shows the per- formance of
each single layer across different modalities and
the fusion results on the two datasets. Although
the last layer in a network is the most sensitive to
category-level se- mantics, it is not unusual for
lower layers to have on par or superior results,
e.g., convS of 2D-CNN-OF on UCF101 and
convS of 2D-CNN-SF on HMDBS1. So it is of
great potential to exploit the intermediate
abstractions such as parts, objects, poses,
articulations and so on for video clas- sification. It
is also of interest to observe that most layers
produce accuracies better than the baseline of
softmax, i.e., the prediction outputs of a network.
This again validates the merit of the proposed
feature aggregation methods to represent conv and
fc layers.

If we use the boosting algorithm to combine
multiple lay- ers, the fusion result significantly
outperforms the baseline for all modalities,
especially for 3D-CNN-OF with 7.2% and 7.9%
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gains on UCFI0l and HMDBS51. This
demonstrates that various abstractions extracted in
multiple layers are of rich complementarity.
Although boost-c is more flexible to have class-
specific mixing coefficients, its results are inferior
to those of boost-u. This is because the model of
boost-c tends to be over-fitting since the C M
parameters to fit in boost-c requires more training
data than the M parameters in boost-u. We thus
use boost-u in the following fusion ex- periments.
3D-CNN-SF is the best modality before fusion as
it jointly models appearance and motion
information. Af- ter multilayer fusion the other
two modalities involving dy- namic cues are
enhanced to the similar performance level, which
shows the boosting method is successful to
maximize the capability of a network.

> Evaluation of Multimodal Fusion

We now demonstrate the multimodal fusion
to combine the proposed four modalities. Since
our networks are ini-tialized by the models pre-
trained on large-scale image and video datasets,
it is natural to fine-tune these networks for the
two modalities of spatial frames. However for
the other two modalities involving optical flow,
they are distant from the source if we regard
fine-tuning as a way of domain trans- formation.
We introduce a simple but effective method
to bridge the two domains—initialize optical flow
networks by spatial frame models that have been
fine-tuned on the tar- get domain. As shown in
Table 4, compared to the networks directly fine-
tuned on the source model (i.e., not initialized by
3D-CNN-SF), our initialization remarkably
improves the results by 3.1% and 4.1% for 3D-
CNN-OF trained with and without FC-RNN.

We finally compare our results with the most
recent state- of-the-art methods in Table 3. Our
method produces the best accuracy on UCF101
with a clear margin to other com- peting
algorithms. It is more challenging to fine-tune net-
works and train boost-u on HMDBS51, where

each train- ing split is 2.6 times smaller than
UCF101.

UCF101 HMDB51
(%) (%)
STIP + BOVW (439|| STIP + BOVW (23.0
[21] [21]
DT + MVSV [4]|83.5| | DT + MVSV [4]]55.9
iDT + HSV [33] [87.9| | iDT + HSV [33] |61.1
C3D [42] 85.2| | iDT +FV [44] |57.2
LRCN [8] 82.9 Motionlets [3] 42.1
TDD [46] 90.3 TDD [46] 63.2
RNN-FV [25] [88.0 RNN-FV [25] [543
Two-Stream [36] [88.0] | Two-Stream [36] |59.4
MultiSource CNN |89.1| | MultiSource CNN |54.9
[32] [32]
Composite LSTM [84.3| | Composite LSTM [44.1
[39] [39]
Ours 91.6 Ours 61.8

Table 3: Comparison of the multimodal fusion to the
state-of-the-art results.

Our method still achieves superior
performance on HMDBS51, while other
competitive results are based on the improved
dense trajectories which require quite a few hand-
crafted process such as dense point tracking,
human detection, camera mo- tion estimation, etc.
As shown on UCF101, large train- ing data is
beneficial for training networks and boosting, so
we are planing to explore the techniques such as
multi-task  learning and temporal elastic
deformation to increase the effective training size
of HMDBS1.

VII. CONCLUSION

In this paper, we have presented a novel
framework to fuse deep neural networks in
multiple layers and modalities for video
classification. A multilayer strategy is proposed to
in- corporate various levels of semantics in each
single network. We employ effective feature
aggregation methods, i.e., iFV and explicit feature
map to represent conv and fc layers. We further
introduce a multimodal approach to capture
diverse static and dynamic cues from four highly
complementary modalities in multiple temporal
scales. FC-RNN is then proposed to effectively
model long-term temporal order by leveraging the
generalization properties of pre-trained net- works.
A powerful boosting model is in the end used for
the optimal combination of multilayer and
multimodal represen- tations. Our approach is
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extensively evaluated on two public benchmark
datasets and achieves superior results compared to
a number of most recent methods.
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