
ISSN: 2057-5688

Volume XIII Issue I 2021 MARCH http://ijte.uk/ 637

Reinforcement Learning for Agent Domain
Interactions with Non-Expert Humans

Vijaya Kumar Elpula, Research Scholar and Dr. Suribabu Potnuri, Professor
Department of Computer Science and Engineering, J.S. University, Shikohabad,

U.P., India email: vijayakumarvarma@gmail.com

ABSTRACT

Robots and agents often struggle to function autonomously in areas of applications where

changes occur often and action results are not predictable. In simple domains, human input

may assist an agent understand the job and domain well; yet, in complicated domains,

people could lack the knowledge or time to provide detailed, precise feedback. Therefore,

for intelligent agents to be widely deployed, they must be able to function independently

with just sensory inputs and little high-level feedback from humans who aren't domain

experts. To achieve this goal, this article lays out the concepts of an enhanced

reinforcement learning system that merges bootstrap learning with RL. Without human

input, the agent learns via seeing and responding to its surroundings. Assuming that the

agent has access to high-level human input, it will incorporate environmental feedback into

its action choice policy by gradually adjusting the relative contributions of the feedback

systems. We test the framework in two virtual environments: Keepaway Soccer and Tetris.

Keywords—Reinforcement Learning, Human Computer Interaction, Human Robot

Interface, Machine Learning, Artificial Intelligence.

I INTRODUCTION

Robots and intelligent agents that engage

in dynamic domain interactions with

people must be capable of autonomous,

efficient, and reliable operation [1, 2].

The majority of current methods for

HCI/HRI either rely on sensory inputs to

allow the agent to function autonomously

[3, 4] or rely on manual training and

domain knowledge [5, 6, 7, 8, 9] to teach
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the agent. The capacity of an agent to

function autonomously in non-

deterministic, partially observable

settings is often limited [10], [11]. But

although human input may assist an agent

build a detailed picture of the job and

domain; people often don't have the

knowledge or time to provide detailed,

precise, real-time feedback in

complicated domains.

Anyone without technical knowledge

should be able to use learning agents; all

they need is a way to give the agent high-

level feedback on how it's doing, like

positive or negative reinforcement, or a

list of options to choose from. The ability

for an agent or robot to gather human

input at the right moment and combine it

with data retrieved via sensory signals

has been the subject of much recent study.

Nevertheless, these approaches are only

applicable to basic simulated domains or

targeted robot activities since they need

extensive domain knowledge and fail to

imitate the unreliability of human inputs

[12], [13], [14]. In this study, we provide

an ARL framework that allows agents to

combine environmental reinforcement

with restricted and inconsistent high-level

human input. The agent may continually

and progressively adjust the relative

contributions of environmental input and

human feedback to its action choices via

bootstrap learning, which is part of the

ARL architecture. Two simulated

domains are used to assess the suggested

method: (a) a single-agent game called

Tetris and (b) a multi-agent game called

Keepaway soccer.

Here is how the rest of the paper is

structured. The suggested scheme and test

domains are detailed in Section III, while

Section II covers related work. Section

IV presents the experimental data,

whereas Section V draws conclusions.

II LITERATURE REVIEW

Some of the significant Human-

Computer and Human-Robot Interface

(HCI and HRI) issues that have led to the

creation of complex methods include

autonomous operation, engagement,

safety, acceptability, and interaction

protocol design [1, 2]. These issues have

been the impetus for the development of

these complicated approaches. Several

algorithms have been developed

specifically for the purpose of enabling

autonomous operation in HCI/HRI,
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which is the subject of this study [15].

These algorithms make use of a wide

range of sensory inputs, including as

visual, verbal, and range data, to

represent social and environmental

signals. A significant amount of research

has been conducted on the use of virtual

agents and embodied relational agents in

many applications, such as healthcare

[16]. However, the present methods often

need a significant amount of subject

matter knowledge, which limits the scope

of their use.

A significant amount of research has also

been conducted on the question of the

capacity of a robot or virtual agent to

acquire new abilities via the display of

such skills by humans [6, 7, 17, 18]. A

significant number of these methods are

centered on the creation of intricate

mathematical models by the

incorporation of fresh information from a

wide range of relevant fields, such as

control theory, biology, and psychology,

amongst a great number of other fields.

There are a few different approaches that

have been developed on the basis of

theories about human social interactions

and the learning process. The associated

feedback and information must be

provided by human participants who have

comprehensive knowledge of both the

domain and the agent capacity. This is a

significant drawback of these systems.

The use of sparse, high-level human input

in robot and agent domains is getting

attention from academics as a realistic

alternative that is based on the

requirements of certain situations. The

CoBot, which was developed by

Rosenthal and colleagues [14], is one

example. This bot is able to learn from its

errors, use success and failure probability

functions to direct itself to certain

locations, and even seeks help from a

human when it becomes disoriented.

TAMER, which stands for "Training an

Agent Manually via Evaluative

Reinforcement," is a system that Knox

and Stone [13] developed in order to

make it possible for humans to teach

learning agents. There are a number of

linear functions that are used by this

framework in order to integrate human

and environmental data, optimize a

reward function in simulated domains,

and perform other activities. The work

that is described in this article also
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includes both reinforcement learning and

a system that integrates environmental

and human input. Both of these aspects

are very essential. The primary difference

is that in order to use all of the

information that is available to the agent,

the two feedback mechanisms

continuously alter their separate

contributions to the agent's action choice

policy by bootstrapping off of each other.

This allows the agent to make the most of

all of the information that is available to

it.

III PROBLEM FORMULATION

This section describes the framework

that combines boot- strap learning with

reinforcement learning, followed by a

description of the specific test domains.

A. The RL Framework and Bootstrap

Learning

Reinforcement Learning (RL) is a

computational goal- oriented approach,

where an agent repeatedly performs

actions on the environment and receives

a state estimate and a reward signal [19].

It is common to model an RL task as a

Markov decision process (MDP). In this

paper, the standard formulation is

augmented to include the human

feedback signal, resulting in the tuple

⟨S, A, T, R,H⟩:

• S is the set of states.

• A is the set of actions.

• T : S×A× Sr → [0,1], is the state

transition function.

• R : S×A → ℜ is the environmental

reward function.

• H is the human reward signal.

At each step, the agent uses a policy to

probabilistically select an action a ∈ A

in state s ∈ S:

π : S× A → [0, 1] (1)

Finding the course of action that will

have the most positive impact on future

outcomes over a given planning horizon

is the goal. Policy gradient algorithms,

policy iteration, and value iteration are

just a few of the many approaches that

may be used to compute this policy. The

integration of high-level human input is

the most notable departure from the

conventional MDP formulation; this

information, like environmental feedback,

is not always reliable. In addition,

whereas environmental feedback is

immediate for a given condition and
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action, human feedback may be a

complex function of not just the current

state and action but also of previous and

future states and actions.

Using a bootstrap learning approach, the

action choice policy is shown in Figure 1

as a function of the feedback signals:

where R is the environmental feedback,

H is the human feedback and a is the

action choice that maximizes the function

of R and H. In the experimental domains

described below, the following functions

were evaluated:

Fig. 1: Augmented RL framework with

bootstrap learning.

In where wr stands for the weight that is

assigned to environmental input and wh
stands for the "weight" that is assigned to

human feedback. Therefore, it is feasible

to set wr equal to one and use wh as the

relative value of human input since the

weights show the relative significance of

the information. A similar function was

able to attain the maximum performance

in the Mountain Car domain when the

weight that was ascribed to human input

was randomly annealed at the end of each

iteration [13]. As a result, a linear

function was taken into consideration.

One of the distinguishing features of our

approach is that it employs a

bootstrapping strategy for both of the

feedbacks as well. Performance in more

complex domains is improved by

continuing weight adjustments that are

based on the relative usefulness of the

feedback signals in improving global

performance measures (for example, the

amount of time it takes to complete a job)

(Section IV). The other combination

strategy, which is referred to as the

exponential scheme owing to the fact that

it employs weight as an exponent, yields
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the most favourable outcomes among a

collection of functions that are equivalent.

This technique was used in order to

investigate a more robust connection

between the reinforcement signals. When

employing the bootstrap learning

technique, the following is the method

that should be followed in order to update

the weights:

Without the need for human intervention,

the agent is able to experiment with

different policies by modifying the

parameters of the underlying RL

algorithms (for example, policy gradient),

and then evaluate the effectiveness of

these policies by using an appropriate

"performance measure" (for examples,

see Sections III-B and III-C). During

each and every second, the agent is

responsible for keeping a record of the

top N policies, which is represented by

the symbol πi. The number i ranges from

1 to N, and it is arranged in descending

order of the performance measures, pmi,

which are similarly indexed from 1 to N.

What is need to be done in accordance

with one of these policies (where wr = 1,

H = 0 in Equation 3), where the

probability of selecting a policy is

inversely proportional to the value of its

performance metric in relation to other

policies, and where the value of the

performance metric is a measure of how

well the policy performs.

It is the responsibility of the agent to

maintain a separate policy in response to

both positive and negative stimuli that are

provided by humans. In addition to this,

the agent evaluates the degree to which

the reaction chosen by the current

environmental feedback-based policy is

congruent with the response chosen by

the human feedback-based policy. One

method for determining the degree of

congruence between the two policies is to

maintain a record of the frequency with

which they both result in the same course

of action. It is possible to represent the

estimated weight that is associated with

human feedback as the degree of match

between the human feedback-based

policy and the best environmental

feedback-based policies, where mi and i

are values that fall within the range [1, N].
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Where a high number indicates that the

human comment is highly believed. If

significant human input is available, a

comparable technique may be used to

weight environmental feedback relative

to one or more sources of human

feedback. It is also feasible to slowly

adjust the weights between episodes.

Take, for example, the weight that may

be changed after episode k:

taking into consideration the performance

measure from both this episode and the

one before it (k minus 1) as a foundation.

When it comes down to it, it is an online

process that is continually changing the

action policy. Depending on each

feedback mechanism, the agent takes it in

turns assuming a policy or policies be

ground truth, and then adjusting the

policy's weight in accordance with the

assumption. Because action choices are

based on the integrated policy (Equation

3), the agent is able to quickly react to a

wide variety of individuals, unreliable

environmental input, and dynamic

changes (such as the human observer

getting bored or exhausted). Specifically,

we will describe two simulated domains

that make use of this learning technique

in the following paragraphs.

IV EXPERIMENTAL SETUP AND

RESULTS

The results of testing that were conducted

in the Keepaway and Tetris domains are

detailed in this section. According to one

hypothesis, the performance of the

bootstrap learning scheme is much

superior to that of the underlying

reinforcement learning algorithms. On

the other hand, the performance of the

combination of human and environmental

feedbacks is superior than the

performance of each respective feedback

mechanism on its own. Throughout the

remainder of this study, the term "ARL"

will be used to designate the upgraded

RL framework's utilization of bootstrap

learning. A degree of significance of 99%

is applied to each and every conclusion,

unless it is specifically stated differently.

People on their own As a Participant:

Four non-expert human participants in

the trials were given a high-level

explanation of the test domains, available
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action alternatives, and performance

metrics that were to be maximized by the

agent or agents. This information was

presented to them. The participants had a

limited understanding of the domains and

states prior to the initiation of these

investigations, and they were also

unaware of the algorithms that were

being used throughout the process. The

behaviour of the agent was either

favourably or adversely rewarded as a

consequence of the input that was

provided by humans.

Experiments were conducted in the Tetris

environment, with cross-entropy serving

as the starting point for the reinforcement

learning algorithm. The ARL approach

and the linear combination function

included in Equation 3 were used in order

to integrate the information from both

humans and the environment. The

strategy that anneals the weight allotted

to human feedback at the end of each

episode—which integrated the signals—

provided the maximum performance in

the basic Mountain Car domain [13]. A

comparison of performance was carried

out using this approach. All of the results

of the experiment are shown in Figure 2,

with each data point representing the

average of twenty different experiments.

There were a maximum of five instances

of human input included inside each

episode, with an average of two

occurrences being included in each

episode. In the intervals between each

trial, participants were provided with a

break.

The ARL technique beats both the default

CE

method

and the

combination scheme that anneals the

weight allotted to human input between

episodes in terms of performance, as

assessed by the number of lines cleared

[13]. This is evident from the fact that the

ARL method is superior to both of these

aforementioned methods. Because the

ARL approach is able to adapt to the

unreliability of feedback signals, it is able

to make advantage of the complementary
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aspects of feedback signals, which results

in improved performance. Despite the

fact that Figure 2 does not display the

outcomes that were obtained only via the

use of human input, the ARL technique is

superior than it. This is owing to the fact

that it is not feasible to provide human

input across a variety of states and

activities over a significant number of

episodes.

Fig. 2: Performance in the Tetris domain using cross

entropy as the default RL algorithm. The ARL

approach performs significantly better than CE and

the scheme that anneals the weight factor for

human feedback.

Fig. 3: Performance in the Tetris domain using

policy gradient as the default algorithm. The ARL

approach significantly improves the performance of

the PG algorithm.

The next thing that needed to be done

was to evaluate how well the ARL

approach functioned by using policy

gradient (PG) as the localization

procedure. The results of these tests are

shown in Figure 6, which you may see. In

comparison to the CE technique, the

default PG approach is supposed to

reduce the number of lines that are

cleaned. This is the desired effect.

Although the ARL approach performs

much better when the feedback systems

are combined, the default PG

methodology clears a significantly less

number of lines than the ARL method

does.

In conclusion, tests were conducted in the

Keepaway social domain, where the

performance of goalkeepers was rated

based on their ability to hold control of

the ball for the maximum period of time

while maintaining optimum performance.

The method for RL that was used was the

SMDP variation of the Sarsa(λ) algorithm.

A step-by-step application of the ARL

technique was carried out in order to

determine the best combination of human

and environmental input for the action
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choice policy. We examined the

exponential combination function

(Equation 3) as well as the linear

combination function (Equation 2) in this

section. However, as indicated in Section

III-C, it is not possible for humans to

offer quick feedback in this area. The

performance was examined both with and

without the use of the gamma PDF

(Figure 2) in order to establish whether or

not it is acceptable for credit assignment

when human input is provided. As was

the case in the Tetris domain, each data

point in Figure 4 reflects the average of

the twenty trials, which provides a

summary of the results. Figure 4

illustrates that the length of each episode

may vary; hence, the human participants

provided feedback infrequently, no more

than twice each episode. Additionally, the

human participants provided input that

was intentionally incorrect; around

twenty percent of the time, individuals

get it incorrectly.

Fig. 4: Performance in the Keepaway soccer domain

using policy gradient. The ARL approach performs

better than the default Sarsa (λ ) algorithm. Using

the learned gamma distribution for credit

assignment significantly boosts performance

Figure 4's graphs show that, despite

human input's unreliability, all schemes

that integrate feedback mechanisms

utilizing the ARL technique outperform

the default RL algorithm without any

feedback. Bootstrap learning swiftly

adjusts the weights when a human

participant gives inaccurate input. Also,

compared to relying only on human

feedback—not shown in Figure 4 due to

the difficulty of providing inputs across a

large number of episodes—the

performance is superior. Compared to the

default RL method, the performance is

much improved by combining the two

feedback systems in a weighted linear

combination. When the linear

combination function and the gamma

PDF are utilized for credit assignment,

the best result is attained. It seems that

the exponential combination function

does not accurately represent the

connection between the feedback signals,

as it does not significantly enhance

performance—even when using the

gamma PDF. Using the bootstrap



ISSN: 2057-5688

Volume XIII Issue I 2021 MARCH http://ijte.uk/ 647

learning scheme and gamma PDF-based

credit assignment inside the enhanced

reinforcement learning framework shows

promise for combining human and

environmental feedbacks in additional

domains, according to the experimental

findings in the two test domains [25].

Challenges to Reliability: The study's

results might be influenced by the human

participants' skills when human input is

used in domains with intelligent agents or

autonomous robots. Four human

volunteers supplied inputs at irregular

intervals for the research detailed in this

article. To further support the findings

given here, further trials may be

necessary in other areas, even if the

participants' performance (when looked

at individually) was constant across the

two domains. More human subjects, more

episodes, other levels of additional noise,

different combination functions, and

different relevant application areas will

all be considered in future trials, along

with a comprehensive analysis of the

accompanying experimental data.

V CONCLUSIONS AND FUTURE

WORK

There is a possibility that agents or robots

may develop a comprehensive grasp of

the task and domain by working

alongside people. This would enable

them to perform successfully and

consistently in contexts that are

constantly changing. However, it may be

unreasonable to anticipate that a person

would possess the expertise and

experience necessary to offer agents in

complex areas with feedback that is

accurate, complete, and delivered in a

timely manner. The purpose of this study

was to establish a strategy that utilizes

bootstrap learning inside an improved

reinforcement learning framework. The

goal of this approach was to assist agents

in making the most of both human-

provided, limited-scope, high-level

feedback as well as reward signals

obtained from environmental interactions.

Weights are used to establish the relative

contribution that each feedback method

makes to the action choice policy of the

agent. These weights are altered in a

progressive and ongoing manner. As a

result of this, the agent is able to make

the most efficient use of the data that is
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available to them. The results of the

studies indicate that the approach

described in this paper is superior to both

the individual feedback systems and the

methods that are already in use that

combine the two types of feedback

systems. The objective of the research

that is being addressed in this paper is to

construct a robust combination of human

inputs and sensory cues. In the future,

research may investigate the possibility

of including an underlying probabilistic

belief representation in order to make it

possible for agents (or robots) to operate

in partially visible settings and

automatically get relevant human input

when it is necessary. The focus of

research in the future will also be on real-

world scenarios in which several

individuals or robots collaborate to

accomplish a shared objective.
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