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Abstract:

Predicting how engaging media content will be is a
crucial but difficult area of study. First, there is the issue
that interestingness is both a subjective and a high-level
semantic concept, with no universally accepted definition.
This adds another layer of complication. This paper details
the process of completing the task using state-of-the-art
deep learning techniques. We do tests using datasets driven
by social factors (Flickr videos) and content factors (videos
from the MediaEval 2016 interestingness job). In order to
take into consideration the multimodality and temporal
aspect of films, we evaluated different architectures of deep
neural networks (DNNs), one of which was a novel
combination of multiple recurrent neural networks (RNNs),
which could process multiple temporal samples
concurrently. After that, we looked into various methods for
handling imbalanced datasets. Using multimodality, which
is the merging of visual and auditory information at a
medium level, improved performance on the test.
Additionally, we demonstrated that substance interest-
ingness is distinct from social interestingness..

Index Terms— Flickr videos, social factors, content
interestingness, multimodal fusion, DNN.

I INTRODUCTION

Sharing media files like photos and movies is becoming
increasingly common in today's fast-paced society.
Therefore, in systems like information retrieval and

recommendation, the capacity to comprehend such material
in order to choose the pertinent ones is crucial. The
comprehension of text can be impacted by several notions.
Recent studies have focused on higher-level (and possibly
less well defined) notions like emotion, popularity, and
interestingness[3,4,5,6], in contrast to the extensive prior
study on lower-level concepts like visual saliency and
aesthetics [1, 2]. This work presents computational models
for predicting video interestingness with a singular focus on
interestingness. It should be noted that, despite the
extensive research on image interestingness, there have
only been two publications that have provided benchmark
datasets (to the best of our knowledge) [13, 6].

Several fields could benefit from media interest
prediction algorithms, including teaching, marketing,
content management, and selective encoding. Due to the
subjective nature of interest, media sharing websites like
Flickr and Pinterest use socially driven metrics like views,
tags, comments, user reputations, and viewer profiles to
determine the social interest of their content. Consistent
with this definition, Liu et al. [11] explored the effect of
viewer profiles and suggested using viewer data to
determine the attractiveness of images. Assuming that all
fashion-related pins on Pinterest are intriguing, Rajani et al.
conducted study on predicting the interest of fashion
products for online shopping [10]. In [8], Chu et al. looked
into how familiarity affected how fascinating people
thought pictures were. For a comprehensive overview of
previous research on social image interest prediction, see
[9]. As for video, Liu et al. [7] assumed that video frames
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would be considered fascinating if they resembled certain
Flickr photographs, therefore they utilised these photos as
an indicator to quantify the interestingness of frames in
travel videos. In their ground-breaking study on video
interestingness, Jiang et al. used the Flickr interestingness
API to compile the first video benchmark dataset together
with annotations. In this study, they employed support
vector machines as a classification method and explored the
use of several hand-crafted features.

The use of direct human annotation of content is another
area of study. In this method, users are given the freedom to
express their personal opinions on the interesting-ness of
images [14, 15, 6], image sequences [16], or videos [13, 6].
This is called content interestingness since the annotation is
solely dependent on how the material is viewed. The
MediaEval 2016 campaign2 just suggested the first
benchmark on Predicting Media Interestingness, in keeping
with this definition. This work, discussed in depth in [6],
has piqued the curiosity of academics and has proven once
and for all the importance of comprehending the visual
properties of multimedia.

In order to assist users in deciding whether or not to
watch a particular piece of content, the task employs two
distinct subtasks that are defined in the context of a real-life
use case scenario: the presentation of a Video-On-Demand
website using movie clips.

Several new contributions to the problem of video
interest prediction are detailed in this article. We begin by
outlining methods for training computational models that
are effective in the face of imbalanced datasets, and then we
suggest numerous such models based on modern DNN
architectures. We validate the usefulness of multimodal-
based systems for the job, which involve combining visual
and auditory information at a medium level. Additionally,
we provide some new understandings from our research on
the differences between socially driven interest and content
driven interest, as well as how to anticipate either.

Below is the outline for the remainder of the article. The
computational models for video interest prediction and the
methods for handling imbalanced data are detailed in
Section 2. Results from two datasets' experiments are
summed together in Section 3. Finally, in Section 5, we
draw conclusions after discussing the suggested systems
and their outcomes.

II PROPOSEDCOMPUTATIONALMODELS

The workflow of our multimodal interestingness prediction
system is comprised of several primary processes, which are
as follows: audio modality learning, visual modality learning,

multimodal fusion, joint-feature learning, a classification
layer with voting for the final predicted label, and finally,
the system is trained. The overall workflow can be seen in
Figure 1. After you have finished reading this introduction,
you will go on to read full explanations of each processing
block. The workflows that were taken into consideration for
visual-based and audio-based systems are shown in Figure 1.
These workflows are compared with monomodal approaches
using blue dashed lines and green dashed-dot lines,
respectively.

2.1. Low-level visual and audio features
By taking it from AlexNet's CaffeNet model 3, we were

able to incorporate a well-known CNN feature into our
visual design [17]. This CNN model that has been pre-
trained selects the coefficients of the last dense layer (fc7)
before to the softmax in order to obtain its 4096-size feature.
When the video frames are split along the centre, they are
compressed until they are 227 pixels in size. This is done in
order to make the video frames smaller enough to fit inside
the dimensions of 227 × 227. Furthermore, in order to
guarantee that the training plan is followed, their means are
subtracted as part of the input normalisation process.

A characteristic of each sound frame is comprised of
sixty Mel-frequency cepstral coefficients (MFCC)[18] as
well as the first and second derivatives of these coefficients
across a window of eighty milliseconds. There are 180
bytes in length for the audio feature that was built. For the
purpose of normalising the input, the means of all of the
MFCC feature vectors are located and then subtracted from
one another. The number of feature vectors for the audio
signal and the visual representation are same. This is due to
the fact that the overlapping windows for the short-term
Fourier transform of the audio signal are centred around
each frame of the video. It is because of this that the visual
and auditory representations continue to be in sync with one
another.

2.2. Learning of features that are temporally driven
and synthesis of several modalities

We use the long-short term memory (LSTM), which
is a well-known architecture for simulating long-term
associations [19], for the two stages of advanced
monomodal feature learning. This is due to the fact that
temporal development is a substantial component of a
visual signal. During the training process, it is
anticipated that LSTM layers would be able to identify
changes that have occurred over a period of time, as
represented in low-level frame-based feature vectors.
These feature vectors include those used by CNN and
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MFCC. Not only that, but we also train extremely deep
CNNs by using the newly proposed residual network
(ResNet) [20], which is what led us to employ this
LSTM layer architecture for learning the residual
functions from the inputs of the LSTM layers. It was not
possible for us to locate any prior study that dealt with
movies and used ResNet blocks in conjunction with
LSTM layers. In addition, we include a multilayer
perceptron (MLP) layer at the beginning of the visual
block in order to achieve a balance between the two
different sources of information. The sizes of the
graphic components are decreased by this layer so that
they are more closely aligned with the proportions of the
audio characteristics. While the installation was being
carried out, we made a number of modifications to the
features of both the visual and aural modes. There are
many different sorts of parameters, some examples of
which are activation functions, dropout, input/output
sizes, and layer types.

Following the completion of this higher-level
modelling of a single modality, the multimodal fusion
stage involves the fusing of both modes in order to
produce an image that contains multiple modes.

2.3. Multimodal feature learning
Our objective is to merge the higher-level
representations that come from the two different
modalities that were taught independently of one
another. The sections 2.3.1 and 2.3.2 will provide a
comprehensive overview of our inquiry into two
different DNN architectures that we use for this
particular purpose.

2.3.1. (LSTM/Resnet)-based architecture
LSTM is once again the technique that is considered to
be the most effective approach for dealing with the
temporal connection of the multi-modal feature vectors.
It is our intention to establish a connection between
LSTM and the ResNet architecture for the single-modal
branches that were covered in Section 2.2. This will
prevent the training process from overfitting the data.
During the course of execution, there was a significant
amount of reconsidering of choices about network
design and parameters.

2.3.2. Proposed n-RNN-based architecture

We provide a unique design that improves temporal
modelling by using multiple recurrent neural network
(RNN) nodes. This design is in addition to the designs
that have been considered to be state-of-the-art in the

past. The W, U, and V weights that were determined
during training are used by each and every one of
these n RNN nodes. This design accepts n input
samples xi,t (where i = 1,..., n) and utilises n internal
states si,t to generate n internal outputs yi,t for each
time event t. The n internal outputs are also referred to
as yi,t.:

Fig. 1 Description Prediction of video interest using
suggested computer models. Here we can see the
process for our multimodal method as black arrows,
and for visual-based and audio-based systems,
respectively, as blue dashed lines and green dash-dot
lines, representing monomodal workflows.

In other words, the nonlinear activation functions of f
and g are being discussed here. For the purpose of obtaining
the ultimate temporal output yʜt [21] from the internal
outputs yi and t, a time-delayed neural network (TDNN) is
often used. As shown in Figure 2, the standard RNN
unfolding as well as the unfolding of the proposed design
are both shown. It is possible that the suggested design will
have an easier difficulty comprehending the idea of a single
instant in time if it continues to study a large number of
samples concurrently. It is possible for it to get more
comprehensive so long as it does not have to recall each and
every information. In addition, we are of the opinion that
the training process is sufficiently clever to ascertain the
most effective method for combining the internal
discoveries yi,t. This is the reason why we chose to use
TDNN rather than a simple pooling methodology. There are
a number of ways in which TDNN is superior than rival
DNN systems such as MLP. One of these ways is that it
enables faster learning.s.
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Fig. 2: Comparative analysis of a conventional RNN (a)
and (b) our recently developed design, which incorporates
several RNN nodes.

2.3.3 Classification layer and voting
The results of the frame-based interestingness prediction
are formed by feeding the outputs of the multimodal
feature learning block into a logistic regression layer,
namely softmax [22]. This layer is responsible for
generating the findings. For the purpose of determining
the ultimate outcome for the video's interestingness
prediction, we use a voting technique that involves
averaging these results.

2.4. Practicing with datasets that are not balanced
We looked at two different methods in order to deal
with the fact that one of our datasets was quite tiny and
lacked balance.:
Up-sampling: Throughout the training process, each
and every sample from the minority class is repeated.
When it comes to our situation, we make use of
engaging movies on various occasions during each
training period.
Random sampling: Videos that are intriguing and
videos that are not interesting are sorted into two groups.
The samples are then selected at random from both sets
with a predetermined probability while the training is
being conducted.

IV EXPERIMENTS
4.1 Datasets

In a sequential fashion, two datasets were used to train
the aforementioned learning-based systems. In [13], the first
dataset was proposed; from here on out, we'll refer to it as
Jiang's dataset. It uses the Flickr interestingness API and
consists of 1200 films, each with a total running time of 20
hours and an average duration of one minute. Keep in mind
that this API relies on user-generated content interactions,
therefore the social interest annotation it generates might
not always match up with a true content interest groundtruth.
The videos were culled by conducting a search using a set
of fifteen keywords. The top ten percent of the results were
deemed intriguing, while the bottom ten percent were
considered uninteresting. Keep in mind that Jiang's dataset
is well-rounded and includes a variety of content kinds, not
all of which are professional. Because of constraints in the
hardware, we had to resort to using 60-frame random
samples while training with this dataset. We used 70% for

training, 15% for validation, and 15% for testing on this
dataset.

The Mediaeval 2016 video dataset is the second dataset
[6]. On average, each of the 5,054 shots used for
development and 2,342 shots used for testing lasts 1 second.
In order to extract these scenes, 78 movie trailers that
resemble Hollywood were manually segmented, indicating
that the content was professional. With only 8.3% of the
development set and 9.6% of the test set containing
interesting content, this second dataset is severely
imbalanced. This time, content-driven interestingness
assessment resulted from annotations that were based
entirely on the content. We divided the development set in
half, allocating 80% for training and 20% for validation, in
order to optimise the computational models.

4.2 Systems and prediction results
In Section 3.2.1, we detail our work using Jiang's dataset to
forecast interest based on social factors, and in Section
3.2.2, we detail our work using the MediaEval dataset to
forecast interest based on content factors.

4.2.1 Observations made with Jiang's dataset
The results of our testing with a variety of parameter

choices for the multimodal and monomodal approaches are
shown in Figure 1. The activation function, the number of
DNN layers, the kind of layer, the size of the layer, and a
great deal of other factors were included in this set of
variables.

A fundamental architecture that consisted of one LSTM
layer, ReLu activation, and dropout=0.5 in the temporally-
motivated feature learning block—prior to the softmax
classification layer and the voting section—and had an
output size of 180 performed well when the audio modality
was used on its own.

The process of selecting the most suitable layout for the
video mode was somewhat more challenging. Among the
components of the model was an MLP that decreased the
size of the input features from 4096 to 1024, an LSTM
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layer that had an output size of 256, and an extra 256 LSTM
layer that was included inside a ResNet arrangement. Every
single one of them had ReLu activation and dropout levels
that were equal to 0.5. We were able to get the same results
even with a simplified architecture that consisted of just two
layers: an MLP with output dimensions of 1024 by 0.5
dimensions and an LSTM with output dimensions of 256 by
0.5 dimensions.

From what can be seen in Figure 1, the multimodal
processing component was the one that received the most
attention. We made sure to keep the design of the two
monomodal branches, which are the fundamental
components of time-driven learning features, as basic as
possible inside the multimodal framework. We chose the
second-best and most straightforward method for video
processing since it only required one LSTM layer (with an
output dim of 256) and one MLP layer (with an output dim
of 1024). A design that just has one LSTM layer is the one
that we recommend the most for audio. The best
configuration for the multimodal feature learning block was
equally straightforward: it was triggered by ReLu, and it
consisted of two layers of long short-term memory (LSTM)
with output sizes of 436 and 218, respectively. All of the
information that was collected from the multimodal and
single-modal systems is shown in Table 1. The performance
of the video modality on the test set is superior than that of
the audio modality by a margin of 2%. Following that, the
multimodal feature learning block makes use of the
multimodal LSTM/ResNet technique in order to ascertain
the most accurate values for both the test and validation sets.
The assertion that multimodality leads to increased
productivity in the workplace is given more weight as a
result of this. Due to the fact that we did not train and test
on the whole video samples, as Jiang et al. did in [13], it
would be inappropriate to compare our work to what they
performed.

Table 1: The results from Jiang's dataset show how well the
prediction of how interesting a movie is worked (in
percentages). V: video; A: sound

4.2.2 How the MediaEval dataset performed
In the case of Jiang's dataset, the fundamental one-

modal designs were used. Our investigation of the
MediaEval dataset focused on the design of the
multimodal feature learning block as its primary
location of concentration. It was noticed by us that
modifying the number of LSTM/ResNet layers did not
have any impact on the performance of either the
complicated or the simple techniques. There is a good
chance that the dataset was too small to cause this. After
much deliberation, we decided to use a single ResNet
structure for this block. This structure would consist of
one LSTM layer, 436 output pixels, and a dropout value
of 0.5.

Additionally, we put our innovative approach to
conveying time via the use of both multi-modal and
single-modal settings to the test. Due to the fact that the
RNNs were set up in a certain order, our RNN-based
system was able to concurrently analyse five
consecutive time samples. In the process of monomodal
learning, we simply replaced the layers of LSTM and
potential ResNet that had been evaluated in the past
with our innovative temporal modelling. The
LSTM/Resnet design was replaced with this 5-RNN-
based architecture; however, the single-modal branching
of the multimodal feature learning block was maintained.

According to the information presented in Section
2.5, it has been shown that the use of data augmentation
methods, such as resampling or upsampling the raw data,
may improve performance and correct the imbalance
that exists within the MediaEval dataset. To such an
extent that we tested with a wide variety of layouts,
some of which included sampling and upsampling,
while others did not, and we also experimented with
different values for the sampling levels and additional
sample. Increasing the pace at which you resampled or
upsampled was always the best course of action. In light
of the facts that we obtained, we decided to keep the
upsampling factor at 9 for all of the designs. There are
nine instances in which the training process takes use of
compelling examples.

The findings of each system are shown in Table 2,
which compares them to the official performance
measure for the MediaEval program, which is the mean
average accuracy (MAP) scores. In spite of the
existence of the recently introduced n-RNN-based
architecture, multiple samples were employed in order
to guarantee that the training samples were dispersed in
an even manner. According to the findings, multimodal
techniques are superior to their monomodal counterparts
in their performance the vast majority of the time. When
it comes to learning features, this is true regardless of
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whether the multimodal approach use LSTM/ResNet or
our innovative n-RNN-based architecture. When
compared to Jiang's dataset, this job is far more difficult
to complete on the MediaE-val dataset. This is before
we even take into consideration the range of evaluation
metrics that are available. The straightforward
explanation for this is that the accuracy values are
greater than the MAP values. Furthermore, we proved
that our new model, which is based on n-RNN, beat the
most recent LSTM/ResNet architecture on both the test
and validation sets. This showed that our model is
superior to the existing design. We also present the
results of numerous official entries to the MediaEval
Predicting Conversation Interestingness challenge so
that you may get a sense of how well they do in contrast
to the current state of the art. They are displayed here
for your convenience. Particularly noteworthy is the fact
that our revised method surpassed both the randomly
assigned baseline, in which samples are split into two
groups, and the third-best approved procedure, which
was chosen from a total of twenty-eight entries.

Table 2 If MAP is 1, samples that were expected are ranked
first, and if MAP is 0, all samples that were not expected
are ranked first. These are the prediction results for the
MediaEval validation and test datasets. We increased the
size of a factor 9 when we said that (training, validation) =
(80%, 20%). A: sound; V: video; TF: learning from Jiang's
model transfer.

V DISCUSSION
During the course of our testing, we were able to

arrive at a few findings. In light of the findings shown in
Tables 1 and 2, it is important to point out that
multimodal systems performed better than monomodal

ones. The only two situations in which multimodal
systems did worse were when we used LSTM-based
systems on the MediaEval test set and when we used
our new n-RNN-based models without upsampling. It is
not possible to consider the multimodal system in the
first case to be very generalisable because of the small
amount of the dataset. The fact that the dataset is very
huge and does not include any upsampling, which
results in a mismatch, is still another argument that may
be given for the second case.

We discovered things that were completely different
between the two samples. This might be true in a variety
of different ways across the board. Due to the limited
size of the MediaEval dataset or the difficulties in
distinguishing between content-driven interest and
social-driven interest, our results may not be
generalisable. This is one of the potential outcomes that
may occur. As a result of the conversation, it is
abundantly clear that the two ideas are quite distinct
from one another. Detailed information may be found in
Table 2. The results of our tests on transfer learning
supported this assertion. We used Jiang's dataset to train
a deep neural network (DNN)-based multimodal model,
and then we used that model to the MediaEval dataset in
order to estimate consumer preferences. It would seem
that there is a cognitive gap, as shown by the
unsatisfactory results (MAP = 0.1411). Two different
sorts of information are presented here. In the first, you
will discover material that was made by average
individuals, and in the second, you will find information
that was developed by trained professionals. There is a
possibility that this is a contributing element. It is likely
that the overall poor performance might be attributed to
the large number of blurry, small photos that are
included in the MediaEval collection as well as the
comments that are linked with them. Due to the fact that
interest is a matter of personal preference, the opinions
of users may not always give an accurate indication of
the quality of content-based films. This gives rise to the
need for further queries.

Our innovative n-RNN-based structure obtained a
best MAP value that was much higher than the baseline,
which indicates that the system did comprehend the
interestingness principle. This is despite the fact that the
sample counts may be insufficient to train sophisticated
DNN structures. In comparison to state-of-the-art deep
neural network designs that are based on LSTM and
Resnet, our cutting-edge n-RNN-based structure is
superior in terms of its ability to concurrently
investigate several temporal data sets. The findings of



ISSN: 2057-5688

Volume XIII Issue I 2021 MARCH http://ijte.uk/ 758

this study suggest that our technique to data temporal
modelling is applicable to a wider range of situations.

VI CONCLUSION
Within the scope of this study, we provide a general
computational model that is capable of predicting the
level of engagement that will be shown by video content
by using cutting-edge deep learning architectures. We
evaluate its effectiveness by applying it to two different
video datasets: one uses annotations based on the
content's interestingness, while the other uses
annotations based on social factors. Our findings
demonstrate that multimodal-based approaches that
include mid-level audio and visual feature fusion
perform much better than monomodal-based systems
when applied to both datasets. Based on our findings,
we have come to the realisation that there is a
significant distinction between the social interestingness
and the content interestingness. We hope that by
collecting a larger dataset with reliable annotation,
which is our objective for the next research, we will be
able to get a deeper understanding of the inherent appeal
of a movie. In order to take into consideration the
subjective aspect of the idea even further, we will
furthermore concentrate our study on simulating the
contextual interestingness of scenarios.
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