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Abstract:

Each point on a base manifold may, for instance, be supplied in Finsler geometry with

coordinates defining its location and a set of one or more vectors expressing

directions.There are many connections that are connected to different covariant

derivatives including affine and nonlinear coefficients and the related metric tensor,

which may typically rely on direction as well as location. Finsler geometry provides a

lot of generality for explaining a variety of physical processes since it includes

Riemannian, Euclidean, and Minkowskian geometries as special instances. Here, the

main emphasis is on descriptions of finite deformation of continuous media. A review

of earlier work involving the use of Finsler geometry in continuum mechanics of

solids is conducted after consideration of the essential mathematical concepts and

derivations. Then, by combining ideas from Finsler geometry with phase field

theories from the area of materials science, a novel theoretical explanation of continua

with microstructure is presented.

1 Introduction

Mechanical behavior of homogeneous

isotropic elastic solids can be described

by constitutive models that depend only

on local deformation, for example, some

metric or strain tensor that may

generally vary with position in a body.

Materials with microstructure require

more elaborate constitutive models, for

example, describing lattice orientation in

anisotropic crystals, dislocation

mechanisms in elastic-plastic crystals, or

cracks or voids in damaged brittle or

ductile solids. In conventional

continuum mechanics approaches,
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such models typically assign one or

more time- and positiondependent

vector(s) or higher-order tensor(s), in

addition to total deformation or strain,

that describe physical mechanisms

associated with evolving internal

structure. Mathematically, in classical

continuum physics [1–3], geometric

field variables describing behavior of a

simply connected region of a body

depend fundamentally only on

referential and spatial coordinate charts

related by a diffeomorphism denoting

corresponding points on the spatial and

material manifolds covered by

corresponding chart(s) and

denotingtime. State variables entering

response functions depend ultimately

only on material points and relative

changes in heir position (e.g.,

deformation gradients of first order and

possibly higher orders for strain

gradient-type models [4]). Geometric

objects such as metric tensors,

connection coefficients, curvature

tensors, and anholonomic objects [5]

also depend ultimately only on position.

This is true in conventional nonlinear

elasticity and plasticity theories [1, 6], as

well as geometric theories incorporating

torsion and/o curvature tensors

associated with crystal defects, for

example [7–15]. In these classical

theories, the metric tensor is always

Riemannian (i.e., essentially dependent

only upon or in the spatial or

material setting), meaning the length of

a differential line element depends only

on position; however, torsion, curvature,

and/or covariant derivatives of the

metric need not always vanish if the

material contains various kinds of

defects (non-Euclidean geometry).

Finsler geometry changed. Another

important connection in Riemann-

Finsler geometry is the Berwald

connections, which was created by

Berwald and is neither metrically

compatible nor torsionally free. Charles

Ehresmann [43] made the first claim that

"A manifold is defined by means of an

atlas of local charts" in 1943. A

connection on bundles called the

"Ehresmann Connection" was another

invention he made. In 1943, Chern [34],

one of the greatest differential geometers

of the twentieth century, revealed the

important linkages that are almost

metrically compatible and torsion-ally

free. He addressed the local equivalence

and Euclidean connections in Finsler

spaces in [35] and reworked it in [36]
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along with the concept of fibre bundles

and the theory of connections. As

ancient as the calculus of variations,

Finsler space is a geometry made up of

straightforward integrals of the type

(1.2.1). According to Chern [37],

"almost all Riemannian geometry results

can be constructed in the Finsler

framework" in 1996. The next

development in the link was the release

of Rund's book [133] on Finsler

geometry in 1959. He created the "Rund

Connection" in this work. Later, the

geometrist discovered that it is identical

to the Chern connection. For his

synthetic solutions to geometrical issues,

Busemann, a forerunner of Finsler

geometry, gained notoriety. He made an

effort to summarise Finsler's argument

in [26] [46]. In 1942, he released a book

titled "Metric approaches in the

Foundations of Geometry and in Finsler

Spaces". He emphasises the gaps that

safeguard the distinctiveness of

geodesics in this body of work. He

found a Finsler space that met all of the

typical geodesic requirements. Both the

geometry of Finsler spaces and the

geometry of metric spaces with

geodesics are covered. These are

referred to as G-spaces, where G is an

abbreviation for geodesic with all the

usual properties. He released "The

Geometry of Geodesics," a revised and

extended version of the earlier book, in

1955. In this work, geodesics are shown

to exhibit regionally specific properties.

In Riemannian geometry as opposed to

Finsler geometry, this assumption is

more probable. In his paper Rander

made the discovery that

electromagnetism and the unified field

theory of gravity are related. In this

investigation, he employed the indicatrix

as an eccentric quadratic hypersurface.

This includes creating a vector at each

location in space and figuring out the

indicatrix center's displacement. The

length ds formula of a line element must

be homogenous to the first degree in dxi.

The far more fundamental "eccentric"

line component is what this criteria calls

for.

where aij is the basic tensor for

Riemannian affine connections and bi is

a covariant vector specifying the

displacement of the indicatrix centre.

The Finsler space was initially used to

solve issues in the real world by
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Ingarden. In his work [58], he

introduced the Lagrangian formulation

for an electron microscope.

2 Design and Methodology

Our study of differential geometry now

broadens our knowledge of non-linear

features and non-trivial symmetries that

occur in several models like classical

field theory, quantum field theory,

mathematical mechanics, and gravity.

Finsler geometry is now used in several

ways in the applied sciences. The theory

of Yang Mills fields, super-string theory,

non linear sigma models, and other

categories of non-linear field systems

used in contemporary particle theory,

quantum gravity, and biology are a few

examples of the non-linear field systems

that are used in these applications, which

started with the traditional field of

general relativity. Bao published a book

titled "An Introduction to Riemann-

Finsler Geometry" [13]. After the

release of this book, Riemann-Finsler

mathematics and Riemann-Finsler

metrics have replaced Finsler geometry

and metrics. The fact that the Finsler

measure can be applied to psychology is

something that every geometer can be

quite proud of. Finsler geometry may be

used to represent a variety of biological

models, including coral reef ecology and

protein structure. Rander's metric may

handle a number of psychometric

problems if non-symmetrical

measurements are also permitted.

Sometimes a physical purpose comes

before a mathematical theory, however

this is not always the case. The

Riemannian & Finsler geometries were

the first pure approaches in differential

geometry.

The primary practical application of

Riemannian geometry is in general

relativity, sometimes referred to as

Einstein's "theory of gravity." The use of

Finsler geometry and its overall impact

on several scientific fields are what

motivate its research. The Riemannian

approach for designing dynamical

systems was first presented by G. Kron

[66]. Barthel's stated point Finsler space

idea has been extensively used to

electron optics by researchers from

Japan and Romania in recent years.

Theoretical applications of

thermodynamics are many, according to

Ingarden's essay [59]. The core of

Antonelli's Finsler diffusion theory was

the tried-and-true Finsler Geometrical

method of the Japanese Matsumoto
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school [7]. Modern differential geometry

provides a broad variety of instruments

for the effective study of Riemannian

geometry since it encompasses all

results, whether global or local, in an

almost direct and refined way and does

not have any quadratic limitations. In

addition to a realistic and mature

understanding of geometry extending

from quadric to generic algebraic

varieties, this offers a foundational

platform for further research. The effort

of many geometers throughout the globe

has led to the development of this

special area of differential geometry,

which has significant applications in

multiple domains of the natural sciences.

3 Methodlogy and Evaluation

The research on Finsler space having

Randers conformally transformed (, )-

metric and Finsler space with conformal

transformation of second type Douglas

space with generalised (, )-metric is

presented in the current chapter.

Riemannian metrics have a well-

developed conformal geometry. Every

constant-curvature Riemannian metric is

well known to be locally conformally

flat. The projective and conformal

characteristics of a Finsler space have a

unique impact on its metric properties,

according to the Weyl theorem in

Finsler geometry [65, 133]. As a result,

a Finsler metric's conformal

characteristics need careful attention.

Given that M is an n-dimensional C-

manifold, and that F(x, y) and F (x, y)

are two Finsler metric functions, let (M,

F) be a Finsler space. It is referred to as

a conformal change when the change F

F, F (x, y) = e (x)F(x,y) occurs when (x)

is a function in each coordinate

neighbourhood of M. This modification

was proposed by Kneblman [65] and

investigated by other scholars [53, 60],

among others. Conformally flat Finsler

metrics are Finsler metrics that are

conformally connected to Minkowski

metrics. The change is known as a

Randers change after Randers, who

originally introduced it in [124], where

F(x, y) is a Riemannian metric function

and = biy i is a 1-form on M. Numerous

works have looked at the geometric

properties of such a transformation,

including [4, 103, 146], etc. The change

F (x, y) = F(x, y) + (x, y), where F(x, y)

is a Finsler metric function, was

introduced by Matsumoto [94] and was

given the term -change. He found a

relationship between the Cartan
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connection coefficients for (M, F) and

(M, F). Numerous writers have since

investigated this change, including [103,

145],... etc. All of the aforementioned

adjustments have been brought together

by Abed in the following manner.

Conformal change is defined as F(x, y)

F(x, y) = e(x)F(x, y) + (x, y). where (x, y)

= bi(x, y) is a 1-form on M and is a

function on x. For instance, the

modification (3.1.1) becomes a

conformal change if = 0. If F is a Finsler

metric or a Riemannian metric function,

it shortens to a Randers change when =

0. From the viewpoint of geodesic

equations, Bacso and Matsumoto [11]

proposed the concept of Douglas space

as a generalisation of Berwald space. As

a generalisation of Berwald space, we

also take the idea of Landsberg space

into account.

Weakly-Berwald space is a new

generalisation of Berwald space

proposed by Bacso and Szilagyi [12]. If

the Douglas tensor Dh ijk vanishes

identically, then a Finsler space with (, )-

metric is said to be a Douglas space of

the second sort [98]. Let's define the

Douglas type of the second kind. If the

homogeneous polynomials Dij = Gi (x,

y)y j Gj (x, y)y i are of degree three,

then a Finsler space F n is said to be a

Douglas space. If and only if Dim m =

(n+ 1)Gi Gm my i are homogeneous

polynomials of degree two, a Finsler

space F n is referred to as a second kind

Douglas type. A Finsler space with a

(, )-metric, on the other hand, is a

Douglas space in [101] if and only if Bij

= Bi y j Bj y i are homogeneous

polynomials in (y i) of degree three. If

and only if Bim m = (n+1)BiBm my i

are homogeneous polynomials in (y i) of

degree two, a Finsler space of a (, )-

metric is said to be a Douglas space of

the second type. Different kinds of (, )-

metrics have been shown to be

conformally invariant in second-kind

Douglas space by many authors [82, 107,

136, 126].

Given that Mn is an n-dimensional C-

manifold and F(x, y) is a Finsler metric

function, let (Mn, F) be a Finsler space.

A change is referred to as a conformal

change if it occurs when F(x, y) e (x)F(x,

y) and if (x) is a function in each

coordinate neighbourhood of Mn.

4 Result Analysis

The idea of dual flat Riemannian metrics

was first put forth by Amari and

Nagaoka [5], who looked at how the
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major families of probability

distributions have different geometrical

structures, such as two convex functions

connected by Legendre transformations

and two flat affine connections that are

mutually coupled. Later, Z. Shen [142]

studied Finsler information geometry

and generalised the dually flatness

notations to Finsler metrics without the

quadratic limitation. Similar to the

Riemannian example, locally dual flat

Finsler metrics provide unique

geometric characteristics and will be

important in Finsler geometry. If there is

a coordinate system (x i) at each point

with spray coefficients of the following

form, then the Finsler metric F = F(x, y)

defined on an n-dimensional manifold is

said to be locally dual flat.

where the scalar function H = H(x, y) is

defined on M. According to [142], this

kind of coordinate system is an adapted

coordinate system. In [33], X Cheng

proved that the Finsler metric F = F(x, y)

on the open subset U R n is locally-

dually flattened if and only if

It is challenging to directly solve this

PDE. The number of locally dual flat

metrics that have been found so far is

rather small. Unified Riemannian metric

When the C function = (x) is present [5].

The Funk-metric, defined on very unit

ball B n R n, is the first non-Riemannian

locally simultaneously flat metric to be

developed [142]. This statistic belongs

to the class of unique Randers metrics.

The author looked at locally dual flat

Randers measures in [33]. In 2011, Xia

[163] provided the comparable

requirements of locally dual flat (, )-

metrics on a manifold with dimension n

3, and he also found the locally dual flat

Finsler metric with isotropic flag

curvature [162]. Yang Li [89] examined

the corresponding circumstances for a

square metric for a locally dual flat (, )-

metric in 2019. The study of the Finsler

metric using reversible geodesics is an

intriguing idea in Finsler geometry. The

research of Finsler metrics using
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reversible geodesics is a distinctive area

of study in Finsler geometry, as well as

in physics. A Finsler space is said to

have reversible geodesics if every

oriented geodesic route is also a

geodesic when it is taken in the opposite

direction. The study of reversible

geodesics in Finsler space is addressed

in [40], Crampin investigates reversible

geodesics in Randers space, Masca

discusses reversible geodesics in [92],

and Sabau discusses reversible

geodesics in Finsler manifolds on [134].

We developed the idea of Finsler space

of reversible geodesics with a

generalised (, )-metric in light of the

aforementioned research publications.

5 Conclusion

Under certain circumstances, we were

able to achieve the findings for the

locally dually flat generalised (, )-metric

F = 1 + 2 + 3 2. With the use of the

generalised first approximate

Matsumoto metric and the generalised

(, )-metric, we were able to investigate if

there are any reversible geodesics in

Finsler space. The requirements for

Finsler space F on M to be reversible

geodesics have been established.

Additionally, we have used reversible

geodesics to study different aspects of

F's geometry. A weighted quasi metric

dF on M is produced by the generalised

(, )-metric F, we have shown. Finally,

using a generalised (, )-metric, we were

able to achieve the T-tensor result.

In this chapter, we looked at the Chua

circuit system's cubic nonlinear

function's Jacobi stability characteristics.

We reconstructed the modified Chua

circuit system as a pair of second-order

nonlinear differential equations in order

to use KCC theory. Then, we discovered

the Berwald connection, five

geometrical (KCC) invariants, and the

nonlinear connection. Except for the

second KCC invariant, all KCC

invariants disappear. The deviation

tensor (second invariants) is produced,

and its irregularly behaving components'

temporal variations are shown.

Additionally, we have shown how the

determinant, eigenvalues, and trace

change over time. We first determine the

deviation tensor components at each

equilibrium point before determining the

Jacobi stability requirements.

Near each equilibrium point, the

deviation vector's temporal fluctuation

and the instability exponents are shown.

We have also shown the deviation
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vector's temporal fluctuation in

curvature, which illustrates the system's

chaotic character.

We take into account the geometric

setup mentioned in Section 3.1 for a 2-

dimensional spray S. As we just noted,

formula (3.1.5) determines S's Jacobi

endomorphism if S is isotropic. The

semi-basic 1-form and the Ricci scalar

are not everywhere vanishing on T0M

since we assume that S is not flat. We

shall limit the domain to some open

cone A T0M, where and are not

vanishing, if we are able to deal with

conic Finsler functions.

H is a horizontal vector field that is 2+-

homogeneous based on the first two

requirements of (3.4.1). The last

condition above corresponds to (H) = JH,

which denotes that H is (fibrewise) an

eigenvector for the Jacobi

endomorphism and represents the non-

vanishing eigenvalue.
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