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Abstract

Advanced unsupervised learning techniques are an emerging challenge in the big data era due to
the increasing requirements of extracting knowledge from a large amount of unlabeled
heterogeneous data. Recently, many efforts of unsupervised learning have been done to
effectively capture information from heterogeneous data. However, most of them are with huge
time consumption, which obstructs their further application in the big data analytics scenarios,
where an enormous amount of heterogeneous data are provided but real-time learning are
strongly demanded. In this paper, we address this problem by proposing a fast unsupervised
heterogeneous data learning algorithm, namely two-stage unsupervised multiple kernel extreme
learning machine (TUMK-ELM). TUMK-ELM alternatively extracts information from multiple
sources and learns the heterogeneous data representation with closed-form solutions, which
enables its extremely fast speed. As justified by theoretical evidence, TUMK-ELM has low
computational complexity at each stage, and the iteration of its two stages can be converged
within finite steps. As experimentally demonstrated on 13 real-life data sets, TUMK-ELM gains
a large efficiency improvement compared with three state-of-the-art unsupervised heterogeneous
data learning methods (up to 140 000 times) while it achieves a comparable performance in

terms of effectiveness.

keywords : Kernel, Task analysis, Unsupervised learning, Big Data, Data mining, Machine

learning

1.INTRODUCTION In most real-world data analytics

1.1 Introduction: problems, a huge amount of data are
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collected from multiple sources without

label information, which is often with
different types, structures, and distributions,
namely heterogeneous data. For example, in
a sentiment analysis task, the data may

contain texts, images, and videos from

Twitters, Facebook, and YouTube. For
extracting knowledge from such big
unlabeled heterogeneous data, advanced
unsupervised learning  techniques are

required to (1) have a large model
capacity/complexity, (2) have the ability to
integrating information from multiple
sources and (3) have a high learning speed.
Recently, many researchers enhance model
capacity by combining unsupervised
learning with deep learning to propose deep
unsupervised learning models. These models
inherit the powerful model capacity from
deep neural networks that can reveal highly
complex patterns and extremely nonlinear
relations. However, most of them fail to
learn from multiple sources. They are

challenged by relations  and

types,
distributions of the heterogencous data
because of the deep neural networks they

used.

Without strong supervised
information, the deep neural networks may

arbitrarily fit complex heterogeneous data
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that leads to meaningless solutions. One
promising way to reveal information from
multiple sources is using multiple kernel
learning (MKL, for short). MKL first adopts
multiple kernels to capture heterogeneous
data characteristics from different sources. It
then learns optimal combination coefficients
for these kernels guided by a specific
MKL can

learning task. In this way,

effectively  capture  different complex
distributions by different kernels, and reveal
the relations between these different
distributions by the kernel combination
coefficients. Despite the advantages of MKL,
it requires supervised label information to
learn the optimal kernel combination
coefficients. However, label information is
often not available or very costly in real big
limits the

data analytics task, which

application of MKL.

More recently, unsupervised MKL
has been studied to tackle the heterogeneous
data learning without supervised labels.
Similar to MKL, unsupervised MKL also
uses multiple kernels to distill information
from various sources. To enable the learning
without supervised labels, it introduces a
kernel-based unsupervised learning
objective, e.g. kernel k-means, to learn the

optimal kernel combination coefficients.
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Although unsupervised MKL achieves

remarkable performance in unsupervised
heterogeneous data learning, most of the
current unsupervised MKL methods are with

a slow learning speed.

The slow learning speed is mainly
caused by the iterative numerical solution,
which is adopted by these methods for

optimizing the  kernel = combination

coefficients. It does not satisfy the

requirements of (1) handling a large amount
of data and (2) real-time learning. To
address the above issues, we here propose a

fast unsupervised heterogeneous data

learning  approach, namely Two-stage

Unsupervised Multiple Kernel Extreme

Learning Machine (TUMK-ELM, for short).
TUMK-ELM

iteratively extracts

information from multiple sources and

learns the heterogeneous data representation
with closed-form solutions. It adopts
multiple kernels to capture information in

heterogeneous data and learns an optimal
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kernel for heterogeneous data representation.

Different from current unsupervised

multiple kernel learning methods, it
seamlessly integrates a much more efficient
kernel combination coefficients optimization

method with an effective unsupervised

learning  objective that simultaneously
guarantees a fast learning speed and a high
learning quality. Specifically, TUMK-ELM
uses the kernel k-means objective function
to guide the unsupervised learning process
and adopts the distance-based multiple
kernel extreme learning machine (DBMK-
ELM, for

combination coefficients. TUMK-ELM can

short) to learn the kernel

be split into two iterative stages.

At the first stage, TUMK-ELM
assigns a cluster for each object in a given
dataset via the kernel k-means algorithm
based on multiple kernels with a set of
combination coefficients. It treats the
assigned cluster as the pseudo-label for each
object. At the second stage, TUMK-ELM
learns  optimal  kernel =~ combination
coefficients based on the learned pseudo-
label by an analytic solution. This set of
coefficients will be further used at the first
stage of TUMK-ELM in the next iteration.
TUMK-ELM iteratively repeats these two
stages until the kernel k-means objective
function is converged. Since the time
complexity of each stage is small, TUMK-
ELM enjoys a high speed of learning from

multiple source information.

1.2 Purpose:
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A fast unsupervised heterogeneous data

learning  approach, namely Two-stage

Unsupervised Multiple Kernel Extreme

Learning Machine (TUMK-ELM, for short).
TUMK-ELM

iteratively extracts

information from multiple sources and

learns the heterogeneous data representation
with closed-form solutions. It adopts
multiple kernels to capture information in

heterogeneous data and learns an optimal
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kernel for heterogeneous data representation.

Different from current unsupervised

multiple kernel learning methods, it
seamlessly integrates a much more efficient
kernel combination coefficients optimization
method with an effective unsupervised
learning  objective that simultaneously
guarantees a fast learning speed and a high

learning quality.

1.3 Scope:
In most real-world data analytics problems,
a huge amount of data are collected from
multiple sources without label information,
often with different

which s types,

structures, and  distributions, namely

heterogeneous data.

1.4 Motivation:
One promising way to reveal information

from multiple sources is using multiple

kernel learning (MKL, for short). MKL first

adopts multiple kernels to capture

heterogeneous data characteristics from
different sources. It then learns optimal
combination coefficients for these kernels
guided by a specific learning task. In this
way, MKL can effectively capture different
complex distributions by different kernels,
and reveal the relations between these
by

coefficients.

kernel

the

different distributions the

combination Despite
advantages of MKL, it requires supervised
label information to learn the optimal kernel
combination coefficients. However, label
information is often not available or very
costly in real big data analytics task, which

limits the application of MKL.

1.5 Overview:

Unsupervised MK has been studied
to tackle the heterogeneous data learning
without supervised labels. Similar to MKL,
unsupervised MKL also uses multiple
kernels to distill information from various
sources. To enable the learning without
supervised labels, it introduces a kernel-
based unsupervised learning objective, e.g.
kernel k-means, to learn the optimal kernel
combination coefficients. Although
unsupervised MKL achieves remarkable

performance in unsupervised heterogeneous
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unsupervised MKL methods are with a slow
learning speed. The slow learning speed is
mainly caused by the iterative numerical
solution, which is adopted by these methods
combination

the

for optimizing the kernel

coefficients. It does not satisfy
requirements of(1)handling a large amount

of data and (2) real-time learning.

2. LITERATURE SURVEY

This work is most related to two
learning paradigms. The one is unsupervised
deep learning that utilizes deep models to
handle large data complexities. The other
one is unsupervised multiple view learning
that leverages heterogeneous information

from multiple views/modes.
A. UNSUPERVISED DEEP LEARNING

Recently, lots of efforts have been

done for unsupervised deep learning [1],

which  aims to  reveal  complex
relations/patterns/knowledge in huge
amount of data [2]. Typically, the
unsupervised deep learning  method

combines unsupervised objective and deep
neural networks to learn a powerful data
representation [3]. For example, the methods
in [4] adopt the input reconstruction as the

unsupervised objective to learn an insight

representation of data. To link the

representation more related to analytics
tasks, some methods use clustering objective

distribution divergence as the

[5],

objectives may induce a representation with

and/or

learning  objective because such
a clearer structure. More recently, many
efforts try to learn unsupervised data
representation in adversarial approaches [6],
which simultaneously take the advantages of
both deep generator and deep discriminator.
Although such unsupervised deep learning
methods can capture highly complex
patterns and extremely non-linear relations,
they cannot learn heterogeneous data well in
an unsupervised fashion. The key reason is
that heterogeneous data may have much
higher complexity and cause the learning
methods converge at a local optimum.
Without strong supervised information, the
deep network may arbitrarily fit the complex
heterogeneous data that leads to meaningless

solution.

B. UNSUPERVISED MULTIPLE VIEW
LEARNING

Unsupervised multiple view learning aims to
learn heterogeneous data without supervised
[7].

multiple

information Among various

unsupervised view learning
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methods, unsupervised multiple kernel
learning methods attract the most attention
because of their ability to represent highly
complex data with multimodality. The
unsupervised multiple kernel learning is first
proposed in [8]. After that, the work in [9]
adaptively  changes  multiple  kernel
combination coefficients to better capture
localized data characteristics. To enhance
the robustness of the unsupervised multiple
kernel learning, the work in [10] introduces
a 2:1-norm to regularize the space of kernel
combination coefficients. More recently, [11]
proposes local kernel alignment methods to
focus on local data relationships. Although
the above methods achieve remarkable
performance in terms of heterogeneous data
representation, all of them fail to apply in
big data analytics tasks due to lack of

efficiency.

3. EXISTING SYSTEM
More recently, unsupervised MKL has been
studied to tackle the heterogeneous data
learning without supervised labels. Similar
to MKL, unsupervised MKL also uses
multiple kernels to distill information from
various sources. To enable the learning
without supervised labels, it introduces a
kernel-based

unsupervised learning

objective, e.g. kernel k-means, to learn the

optimal kernel combination coefficients.
Although unsupervised MKL achieves
remarkable performance in unsupervised
heterogeneous data learning, most of the
current unsupervised MKL methods are with

a slow learning speed.

3.1 Disadvantages
The slow learning speed is mainly caused by
the iterative numerical solution, which is
adopted by these methods for optimizing the
kernel combination coefficients. It does not
satisfy the requirements of (1) handling a
large amount of data and (2) real-time
learning.
4. PROPOSED SYSTEM

To address the above issues, this

fast  unsupervised

work  propose a

heterogeneous data learning approach,

namely Two-stage Unsupervised Multiple
Kernel Extreme Learning Machine (TUMK-
ELM, for short). TUMK-ELM iteratively
extracts information from multiple sources
and learns the heterogenecous data
representation with closed-form solutions. It
multiple  kernels to

adopts capture

information in heterogeneous data and
learns an optimal kernel for heterogeneous

data representation.

4.1 Advantages
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For extracting knowledge from such big
unlabeled heterogeneous data, advanced

unsupervised learning techniques are

required to (1) have a large model
capacity/complexity, (2) have the ability to
integrating information from multiple
sources and (3) have a high learning speed.
The proposed TUMK-ELM has all these

requirements

5. Architecture

*\‘
W

Fig. 1. System architecture: A collection of APs provides service to
mobile users according to their locations. Each AP may cover more than
one region.

6. IMPLEMENTATION
6.1 Multiple Kernels:

TUMK-ELM first projects
heterogeneous data into kernel spaces by
multiple kernels. It then adopts an iterative
two  stages

approach  to  integrate

heterogeneous information.

6.2 Stage 1: K-Space:

At the first stage, TUMK-ELM
generates a K-Space, in which the data is
constructed from multiple kernel spaces and
the pseudo-labels are assigned according to

the learned optimal kernel.

6.3 Stage 2: Optimal Kernel Combination

Coefficients:

At the second stage, TUMK-ELM learns
optimal kernel combination coefficients
based on the generated K-Space. After
convergence, the optimal kernel contains the
integrated information from heterogeneous

data that suits for the subsequent analytics

tasks.
7.0UTPUT RESULTS
TUMK-ELM Data Learning Approach
Select Data Load
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Linear Kernel Matrix
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8 CONCLUSION AND FUTURE
ENHANCEMENTS
This work has proposed a Two-Stage
Unsupervised multiple kernel Extreme
Learning Machines (TUMK-ELM), a more
flexible algorithm for fast unsupervised

heterogeneous data learning. According to

the experiments, the learning speed can
achieve as much as 1,000 times faster than
RMKKM, 140,000
LMKKM, and 8,500 times faster than MKC-

times faster than
LKAM. Meanwhile, the clustering accuracy
of our proposed TUMK-ELM is comparable
with its competitors. Experimental results
clearly demonstrate the

TUMK-ELM. In the future, how to adaptive

superiority of

adjust the base kernels to fit the dynamic
heterogeneous data distributions will be

considered.
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