
ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 65

An Innovative Framework for Safe Data
Sharing and Authentication in a Cloud-Based

Big Data Setting
BARUPATI VINOD KUMAR

Research Scholar
Department of Computer Science
J.S UNIVERSITY, Shikohabad, UP

Dr. VIKRAM SINGH RATHORE
Professor

Department of Computer Science
J.S. UNIVERSITY, Shikohabad, UP

Dr. VITTAPU MANI SHARMA
Professor

Department of Computer Science
J.S. UNIVERSITY, Shikohabad, UP

ABSTRACT
Cloud big data security is becoming more complex as the number of data sources continues to grow at a fast pace. Concerns
around data management, integrity, privacy, and infrastructure security are all part of Big Data security. Cloud computing has
made big data analytics, storage, and processing possible, however the cryptographic methods used to secure large data on the
cloud are inadequate. In this paper, we outlined the main issues with cloud-based big data security and offered a general
framework for addressing them. Our proposed novel system architecture is dubbed SADS-Cloud, which stands for Secure
Authentication and Data Sharing in Cloud and is ideal for use in a Big Data Environment. I outsourcing large data, (ii) sharing
big data, and (iii) managing big data are the three procedures covered in this paper. When it comes to large data outsourcing, the
SHA-3 Hashing Algorithm is employed for data owner registration to the Trusted Center. The MapReduce technique is used to
split the input file into chunks of a predetermined size. The SALSA20 algorithm is used to encrypt each block. Participants in
data exchange engage in secure file retrieval. User credentials (i.e., ID, password, secure ID, current timestamp, and email ID)
are hashed and compared to the database in order to achieve this. In order to organize massive data in the following ways, big
data management employs three essential procedures: A number of algorithms, including Fractal Index Tree, Density-based
Clustering of Applications with Noise (DBSCAN), and Lemperl Ziv Markow Algorithm (LZMA), are used to compress and
index the files stored in the cloud database. This paves the way for personalized searches, as well as additions and removals. The
proposed system was tested using the following metrics: throughput, compression ratio, information loss, encryption time, and
decryption time; Java programming was used for its implementation.

Keywords:
Big Data Outsourcing, Big Data Sharing, Big Data Management, SALSA Encryption with MapReduce, Fractal Index Tree, and
SHA-3

1. INTRODUCTION
Distributed storage has made on-demand data
sharing feasible by improving digital data
preservation, retrieval, and distribution. Information
security is a major concern that limits many cloud

applications. However, simple and speedy access
might pose a security risk when exchanging sensitive
data [(Huang et al. 2015)]. Cloud admins' easy access
to sensitive data raises security concerns. Consumer
anxiety and disapproval of distributed computing in

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 66

banking and government agencies increase due to
this concern. The conventional Big Data strategy
does not highlight organized and unstructured data
sensitivity. Insurance and security should be
included to reduce the risk of personal information
disclosure. Due to the large amount of data and the
mix of structured and unstructured information, new
Big Data models are needed to improve security.
Academics are increasingly interested in Big Data
security because hackers target Big Data storage
systems [(Santos and Masala 2019)], [(Jeong and
Shin 2016)]. Volume, velocity, and diversity are the
three pillars of "Big Data". Big Data's practical
applications are shown in [(Bronson, K., & Knezevic
2016)], [(Bholat 2015)], and [(Bearman 2015)]. Big
Data storage systems' complexity, security breaches,
and large data volumes make it difficult to address
these issues in the real world [(Meshram et al.
2019)]. It's hard to trust cloud or huge data servers.
Tensor rules are used to compute blend arithmetic
operations over real numbers in the Fully
Homomorphic Encryption for Blend Operations
(FHE-BO) model [Gai and Qiu 2018]. CEA (Cyber-
Enabled Applications) generates optimal task
assignment plans for energy-aware green computing.
Gai et al. (2016) addresses energy waste in dynamic
networking, and [(Gai, Qiu, and Zhao 2018)] reduces
energy usage. Healthcare will be our focus.
Healthcare applications need a large, secure server
to store 140 GB of genome data [(Stergiou and
Psannis 2017)]. Security breaches on cloud and big
data servers expose data owners' sensitive

information [(Wei et al. 2019)]. Brute-force, stolen
verifier, password guessing, and other security
breaches may harm Big Data storage systems.
Encrypting data transfers using ciphertext has failed
to preserve users' and owners' privacy and
confidentiality [(Li et al. 2017)]. Big Data worries
about data security. Considering the importance of
security, it is necessary because:

 Access policy is not designated when
ciphertext is updated and here user
legitimacy is failed that means who intends
to access the data are still a great concern in
Big data

 There is no authorized entity to monitor the
data sharing and outsourcing to storage
systems.

Big data storage system authentication,
confidentiality, and integrity must be monitored
constantly. Real-time usage include smart grid,
transaction, and e-healthcare [(Jain, Gyanchandani,
and Khare 2019)]. Encryption is the key to
permission and data security [(Ma 2018)]. When
much data is aggregated, less storage space is
required. Big data security should be considered
while grouping data types. Big Data clustering poses
dangers, including data loss [(Lighari and Hussain
2018)]. The encryption procedure after data
compression is the main reason [(Castiglione et al.
2015)]. Compression before encryption can fix such
errors. Many safe clustering approaches have been
proposed. Wang and Lin (2016) recommend Locality
Sensitive Hashing (LSH) for similarity clustering. It

Figure 1 : Big Data Enabled Cloud Environment

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 67

calculates dataset similarity. LSH, which works well
with smaller datasets, cannot find similarities in Big
Data's terabytes, gigabytes, and petabytes. Due to
data volume, clustering efficiency is crucial [(El Hadj
et al. 2019)]. Big data enabled cloud environments
solve the challenge of inexpensively storing
enormous volumes of data. Fig. 1 shows the Big
Data-enabled Cloud for data owners and users. Uses
include apps and services. When addressing Data

Owners, data quality, security, and responsibility and
accountability are typical words. Data owners store
their huge data on the cloud, which is
straightforward and effective. Data consumers are
those whose occupations demand data consumption.
Services and applications can be from healthcare,
manufacturing, renewable energy, building
management, energy management, and more.

What we found makes it sad that we have to point
out that none of the present encryption methods
offer enough security, and all of them have the same
problem: they take a long time to compute. Our
main goal is to make an encryption system that is
easy to use and can be proven to be safe. The main
idea of the paper is to suggest a new way to make
big data settings safe for authentication and sharing
data in the cloud. The name for this method is SADS-
Cloud. The rest of the document's parts are grouped
in this way: In Section 2, the problems that this field
of study is facing are thoroughly explained. In
Section 3, these problems are brought to light. The
suggested way to deal with the problems listed
above was talked about in SECTION 4. Section 5 goes
into detail about the benefits of the suggested
system when it is put into action. It also shows the
results of the tests and compares them to current
methods. This part also helps you see where earlier
attempts fell short. In Section 6, the paper's
conclusion and suggestions for how it could be
improved in the future are summed up. This section
also suggests ways that the paper could be improved.

2. RELATEDWORK

In this section, we cover the state-of-the-art of Big
data security over Cloud environment. We
categorize this section into two classes i.e. User
Privacy (Authentication) in Big data Cloud and data
security and retrieval in the Big data Cloud.

Authentication in Secure Cloud Big Data

In a hierarchical attribute authorization structure,
[Shen et al., 2017] proposed a secure authentication
method that makes use of a tree-based signature. It
is used in a multi-tiered authentication system.
Protecting against replay and forgery attacks, it
ensures privacy preservation. An authorized
hierarchical structure of attributes increases the
time complexity and storage difficulties. A secure
communication protocol developed to monitor the
system's functioning, [(Aditham and Ranganathan
2018)] established the two-step attack detection
approach. Every procedure begins with the building
management of the system. In the second step,
replica nodes are matched with instructions. In safe
data transfer, user and data privacy are jeopardized
by randomly generated keys by data nodes. We have
already covered cloud access management and
massive data processing in [(Reddy 2018)]. This work
made use of access control for data access. One
alternative to using symmetric keys for
authentication is Kerberos, which relies on a third
party. It opens up info that isn't secure. This
research integrates anomaly and access control to
safeguard data from malicious users. Data
monitoring and control are two of Spike's primary
functions. This work does not support a variety of
data sources, such as text, images, audio, or video.
[(Vorugunti 2017)] has developed a new framework
called PPMUS, which stands for privacy-preserving
mobile user authentication system. Its used Big Data
qualities include storage capacity, user-friendliness,
and strong Big Data management. Fuzzy Hashing and

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 68

Fully Homomorphic Encryption (FHE) are the two
methods that are used to safeguard user privacy. In
order to construct the user profile, fuzzy hashing and
FHE are used. Its creation takes place in the cloud,
where servers and users communicate online. One
major issue with this architecture is that it attempts
to determine the user's authenticity or
fraudsteriness based on how they type their
password. On the other hand, this method does not
protect user privacy since dishonest people may use
the same ideas to steal information. [(Zhao, Li, and
Jiang 2018)] laid forth a secure authentication
method for users that relies on passwords in
scenarios when there are several servers. For user
authentication, we choose elliptic curve
cryptography (ECC), which prevents impersonation
and offline password guessing. Efficiency and
security were the metrics used to evaluate the
results of the experiments. In addition, the proposed
strategy is effective for use in real-time scenarios.
The ECC asymmetric cryptography method
generates smaller key sets for both public and
private use. The computation and transmission cost
is high, which is a major drawback when compared
to hashing methods.

3. PROBLEM STATEMENT

Traditional approaches relied on three main
tenets: data security, user privacy, and retrieval. The
proposed strategy incorporates all three classes.
The policy of action in [(Hu et al., 2018)] was created
by data owners who securely updated their
credentials and original data. To update a new
access policy in a secure and verifiable manner, an
upgraded NTRU cryptosystem was proposed. Wrap
Failure and Grap Failure, two problems with older
NTRU systems, are addressed. Furthermore, secret
sharing was shown using (�,�) thresholding. Cloud
access control systems are vulnerable to attacks.
When a data owner is compromised, the hacker
gains full access to private data. So, a reliable third

party is required for data owners' governance and
regulation. In order to address both the clustering
problem and the need for data security, [(Nafis and
Biswas 2019)] used a multidimensional clustering
approach in conjunction with the simple data
encryption standard (SDES). In order to reduce data
size and sidestep heavy overheads, the Huffman
compression (HC) method was created. But, the best
practice is to compress the source file before
encrypting it. This article failed to find a way to
decrease computing time by compressing and
encrypting data. It performs well with relatively
small datasets. As a very simplistic encryption
scheme, SDES is severely lacking in security. (Ramya
Devi and Vijaya Chamundeeswari, 2018) proposed
using triple DES in healthcare settings.
Anonymization, data encryption (using triple DES),
and authentication (using SHA-256) are the three
operations that comprise this research. The main
problems with this study are as follows: (1). The
encryption and decryption durations for Triple DES
are substantial, even for small blocks (64 bits) (2).
The security of user data exchanges might be
jeopardized if insufficient attributes are considered
during authentication. Replay, stolen verifier, denial-
of-service, chosen plaintext, server size compromise,
man-in-the-middle attack, and other security threats
were used in [(Chattaraj et al. 2018)] HEAP. The
security measures used in this research are AES and
ECC. Both the encryption and decryption times are
increased for the massive amounts of data when the
two methods are combined (AE S and ECC).

4. PROPOSEDWORK

In this work, we created a new system architecture
dubbed SADS-Cloud—which stands for Secure
Authentication and Data Sharing in Cloud-enabled
Big Data Environment—to fix the problems with the
existing techniques. The major objective of this
study is to provide a method for securely storing and
retrieving large datasets in a cloud-based

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 69

environment.

4.1 Big Data Outsourcing from Data Owners
For data outsourcing to the CS, data owners must
register their identities to the TC. There are three steps
are involving in this stage:

(1). Registration: In this step, the data owner registers to
TC by following identities: Mail ID, UserID, Password,
Current Timestamp and Secure ID. User ID and
Password are hashed and then given to TC for
registration. After registration, TC generates a hash

value for DO given information using SHA3-384. The
details of the registration process are shown in Fig.3.

(2). Login:When DO enters for login to CS. They must be
providing valid information such as UserID, Password,
Current Timestamp and Secure ID. Then wait for
successful authentication response CS.

(3). Authentication: For login purposes, all identities are
hashed and stored in the database. Again it is hashed
to compare the database with the given DO
information. The step-wise description of user
authentication is shown in Fig.4.

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 70

Figure 2. Proposed System Architecture

Upon TC authentication success, DO will ask for the
private key to encrypt data. The DO specifies the
desired degree of security, and TC creates a private
key accordingly. For DO, there are three distinct
sensitivity levels: (i). The second one is sensitive.
Most Sensitive and (ii). Without emotion. On the
other hand, sensitive data needs access controls.
Therefore, in order to prevent security breaches, the
CS monitors the quantity of data accesses. TC uses

the SALSA 20 Encryption technique to produce keys.
Data classified as sensitive has a key size of 20–128
bits, whereas data classified as very sensitive uses a
key size of 256 bits. Outsourcing the encryption of
huge data sets to the cloud is a time-consuming
procedure since both the encryption and decryption
phases require a long time. The SALSA 20
Encryption-MapReduce system is being studied as a
solution to these problems.

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 71

4.1.1 SHA3 Hashing Algorithm: It is a secure hashing

algorithm, which composed of four hashing functions
include SHA3- 224, SHA3-256, SHA3-384, and SHA3-

512. It also consists of two Extendable Output Functions
(XOFs) include SHAKE-128, SHAKE256. The SHA-3
hashing algorithm is proposed for message authentication

in registration. It is based on the Keccak algorithm with
Sponge Construction. The procedure for SHA-3 hashing
algorithm is as follows:
PSEUDOCODE FOR SHA-3 HASHING ALGORITHM

Step 1) Begin

Step 2) SHA3:= PROC(M::STRING, MT::Name:=TEXT)

Figure 3. Data User Registration with Trusted Center

Figure 4. User Authentication with Trusted Center

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 72

Step 3) Local , , ;

Step 4) If Type (PROCname,”INDEXED”)

Step 5) ThenN:= OP(‘PROCname’)

Step 6) Else

Step 7) Error ‘Output length is not specified’

Step 8) End If;

Step 9) If Not in Output (224, 256, 384, 512) Then

Step 10) Error ‘Not a Valid Output Length’, �

Step 11) End If;

Step 12) M:=MessagetoBytes (M, MT);

Step 13) := Keccak (M, 1600, 1600-2.N, N, Hash);

Step 14) ();

Step 15) EndPRO

In hashing, the input is padding functions which are
the messages provided in list of integers or bytes
range from 0 to 255, Domain and Bit Rate. In domain,
it considers the Hash, XOF and KEC, which require
various paddings and run Domain Separation by
differentiating input and corresponding to a hash
function. Finally, an output for this padding function
is to the array, which contains padding message
blocks and each and every block consists of list of
integers. The above procedure is implemented for
hashing for secure user authentication at both TC and
CS. PROC indicates the procedure, N is the output
length bits (224, 256, 384, and 512). M is the message
and MT is the message type. The whole procedure is
executed for hashing DO and DU information

4.2.2. LZMA for Data Compression: Firstly we
compress the data before data encryption. To
mitigate the issues of Huffman compression, in this
work we proposed LZMA (Lempel Ziv Markow
Algorithm) for compressing data. After that, we
perform data encryption based on the
aforementioned procedure. In LZMA, delta encoder
and sliding dictionary encoder with LZ77 dynamic
dictionary encoding are proposed and the output of
LZMA encoder is presented in terms of tuples
include Offset, Length and New Symbol. The
functioning of delta encoder and decoder is the
following:

 Delta Encoder: It forms the input data for

compression using the Sliding Window. It stores
and transmits data in sequential forms.

 Delta Decoder: The outcome of this entity is to
keep the first data stream and subsequent bytes
are stored based on performing addition
operation between current data byte and
preceding data byte.

The LZMA are source coding calculations which
differ from those that we have recently examined
(for example Huffman Codes and Shannon Codes) in
the following ways: (i) They utilize variable-to-
variable-length codes, in which both the quantity of
source symbol encoded and the quantity of encoded
bits per codeword are variable. Also, the code is
time-varying. (ii) They don't require earlier
information on the source insights, yet after some
time they adjust with the goal that the normal
codeword length L per source letter is limited. Such
an algorithms called universal. (iii) They have been
broadly utilized in practically speaking; in spite of the
fact that more up to date plots enhance them, they
give a straightforward way to deal with
understanding all-inclusive information about
universal data compression algorithms. (iv)Lossless
pressure is commonly utilized for applications that
can't endure any difference between the first and
reproduced information. (v) It uses a dictionary
compression scheme and features a high

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 73

compression ratio and a variable compression-
dictionary size. (vi)Small memory requirements for
decompressing (depends on dictionary size). (vii)
Supporting multi-threading.

4.2.3. SALSA20 with MapReduce: We encrypt
compressed data for preserving the security of data
in CS. For that, we proposed the SALSA20 algorithm
with the MapReduce paradigm. It is an encryption
algorithm provides several

benefits to other symmetric algorithms. We firstly
describe the MapReduce model and the SALSA20
encryption algorithm.

5. EXPERIMENTAL RESULT

In this section, we cover the experimental results
with three sub-sections include experimental setup,
comparison study, and results and summary for the
proposed SADS-Cloud and previous schemes.

5.1 Experimental Setup

STEPS INVOLVING IN THE CONFIGURATION FOR
EXPERIMENTS ARE THE FOLLOWING

Step 1) Ubuntu 14.04LTS installed every node

Step 2) JDK 1.8.0 installed in every node

Step 3) Hadoop 2.7.2 installed in all nodes

Step 4) Nodes in Hadoop, categorized into Master and Slave nodes

Step 5) Create configuration and make connectivity for communication

1.1 Comparison Study
In this section, a comparative study of the proposed
scheme and previous similar approaches is
presented. Information loss, compression ratio,
throughput, encryption time, decryption time, and
efficiency are considered as the evaluation metrics
for comparison between the proposed and previous
approaches include SDES with HC and Triple DES.

Table 3 shows the drawbacks of existing methods.

Table 1. System Configuration

Hardware (Intel i5 Core Components)

Processor 3.30GHz

CPU 4Cores

Memory 8GB

Hard Disk 500GB

Connectivity Gigabit Ethernet LAN

Software (Single Node Cluster)

Operating System Ubuntu 14.04LTS

JDK 1.8.0

Hadoop 2.7.2

Netbeans 8.2

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 74

Table.3. Drawbacks of Existing Approaches

5.2.1. Information Loss: It is also known as “Data
Quality”. Information loss is a significant metric for data
retrieval in Cloud. During encryption/compression, we
must use some error conditions to recover the data from
failures. Otherwise, information is lost at any stage. In
addition, information is due to any malicious actions over a
Cloud database. Information loss for the proposed and
previous approaches can be seen in Fig.7 the performance
of the proposed SADS-Cloud is compared with SDES with
HC and Triple DES. When compared to SDEA with HC
and Triple DES, our proposed scheme shows better results

i.e. information loss of our proposed scheme is very small.
Despite the LZMA compression technique, we obtained
very small information loss. In SDES with HC,
compression is invoked after encrypting data and then
error conditions are verified and applied over encrypted
data. In triple DES, information loss is more since there is
no compression scheme is invoked. The average
information loss for the proposed SADS Cloud is 0.023%
whereas SDES with HC and Triple-DES is 0.07%, and
0.175%, respectively.

State-of-the- art
Contributions Drawback

SDES with HC (1). Implement SDES for file encryption

(2). Apply HC for encrypted data
compression

(3). Error control on compressed file

(4). Use clustering on error controlled data

 Low-level security
 High computation time
 Suitable for small-sized data

Triple DES (1). User Authentication using SHA-256

(2). Triple DES for encryption

(3). Anonymization

 Lack user-privacy
 Poor Scalability
 Time-consuming

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 75

5.2.2. Compression Ratio: The compression ratio is a
metric that plays a significant role in the Big data-enabled
Cloud. It is defined as the rate of data after performing the
compression. However, data compression techniques can
be classified into two categories such as lossy compression
and lossless compression. Lossless compression techniques
are beneficial than lossy compression since it does not
reduce original contents. It is calculated as follows:

����������� ����� =
���

��� ������ �����������
(1)

Where is the compressed file size, and is the
original file. Fig 8 indicates the compression ratio
performance of the proposed SADS-Cloud and SDES
with HC.

If any of the compression techniques show high CR,
then it means that the technique is poor to minimize
the original data. When compared to SDES with HC,
our proposed SADS-Cloud scheme produces very less
compression ratio. With the use of the LZMA
compression technique, our proposed SADS-Cloud
has provided a high compression ratio. In SDES with
HC, the Huffman compression technique is proposed
which ensemble changes according to frequencies
and probabilities, but it does not consider Block of
Symbols and it cannot be practical for large

Figure 5. Comparison of Information Loss vs. File Size

Figure 6. Comparison of Compression Ratio vs. File Size

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 76

alphabets. Our proposed LZMA compression
technique can be solved all the problems of HC. In
addition, LZMA is a fast compression technique so it
can be easily suited for all applications. From the
plots, we conclude that the average compression
ratio for the proposed SADS-Cloud is 0.0585% and
SDES with HC is 0.0656%.

5.2.3. Throughput: In general, each job assigned by
the user must be completed within the time
constraint. Throughput is a very important metric
used for analyzing secure data transmission and
storage over Cloud. It can be varied with respect to
the processing speed of the designed system. To
compute the performance of throughput, we
considered two metrics such as clustering speed and
data sharing speed to users. Fig 9 shows the
comparison for throughput in terms of clustering
speed. From the graph, we observed that the
proposed clustering technique i.e. DBSCAN is
providing better throughput performance than other
clustering techniques at the time of clustering and
data sharing to the CS. In SDES with HC, throughput
is very less due to high processing overheads for
individual files. Sharing speed is a data retrieval time
for data users. It is computed by follows:

If any of the compression techniques show high CR,
then it means that the technique is poor to minimize
the original data. When compared to SDES with HC,
our proposed SADS-Cloud scheme produces very less
compression ratio. With the use of the LZMA
compression technique, our proposed SADS-Cloud

has provided a high compression ratio. In SDES with
HC, the Huffman compression technique is proposed
which ensemble changes according to frequencies
and probabilities, but it does not consider Block of
Symbols and it cannot be practical for large
alphabets. Our proposed LZMA compression
technique can be solved all the problems of HC. In
addition, LZMA is a fast compression technique so it
can be easily suited for all applications. From the
plots, we conclude that the average compression
ratio for the proposed SADS-Cloud is 0.0585% and
SDES with HC is 0.0656%.

5.2.4. Throughput: In general, each job assigned by
the user must be completed within the time
constraint. Throughput is a very important metric
used for analyzing secure data transmission and
storage over Cloud. It can be varied with respect to
the processing speed of the designed system. To
compute the performance of throughput, we
considered two metrics such as clustering speed and
data sharing speed to users. Fig 9 shows the
comparison for throughput in terms of clustering
speed. From the graph, we observed that the
proposed clustering technique i.e. DBSCAN is
providing better throughput performance than other
clustering techniques at the time of clustering and
data sharing to the CS. In SDES with HC, throughput
is very less due to high processing overheads for
individual files. Sharing speed is a data retrieval time
for data users. It is computed by follows:

�ℎ����� ����� =
�������� ���� ����

����� ��������� ���� ��� ���������
(2)

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 77

Figure 7. Comparison of Throughput vs. Clustering Speed

For optimal data retrieval, CS keep store encrypted
data for data owners and managed by fractal index
tree, which results in better performance in our
proposed scheme. Data user requests data item to the
CS. The CS retrieves data items from the nodes. With
the lack of clustering, indexing and proper data
management, previous scheme are very poor in
throughput than our proposed scheme, which is can
be seen in Fig.10.

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 78

5.2.1. Encryption Time: Encryption time and
decryption time are important metrics for
any security technique. Based on the time
performance, it is evaluated and proved. It is
the time duration for performing data
encryption (convert plain text into
ciphertext). Fig 11 indicates the performance
of the encryption time for the proposed
SADS-Cloud with SDES with HC and Triple

DES. We use a single secret key for
encryption and decryption. SDES and Triple
DES increases computational and
communication overheads. For this reason,
encryption time for the proposed scheme is
very less than previous schemes. The
average encryption time taken for the
proposed scheme is 0.06875s, whereas SDES
with HC requires 0.11s and Triple-DES
requires 0.175s, respectively

Figure 9. Comparison of Throughput vs. Sharing Speed

Figure 8.Comparison of Encryption Time vs. Input Files

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 79

5.2.2.Decryption Time: It is the time duration for
performing data encryption (reverse of
encryption). Decryption time for the
proposed and previous schemes is depicted

in Fig.12. From the plots, we observed that
the proposed scheme has required a
minimum time period for decryption
operation

5.2.3. Efficiency (%): In this paper, we considered
efficiency is one of the metrics that
illustrates the performance in terms of
communication and computation overheads
of the proposed algorithms with previous
algorithms. From Fig 13 it can be observed
that the proposed SADS-Cloud technique

produces higher efficiency among the other
previous security schemes. This describes
the proposed scheme is powerful and it can
be applied for any kind of data application. It
protects the data from unauthorized access
as well as reduces errors caused by security
techniques.

Figure 10. Comparison of Decryption Time vs. Input Files

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 80

Figure 11. Comparison of Efficiency (%) vs. Input Files

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 81

1.2 Results Summary
In this section, we illustrate how the proposed

scheme has provided better performance than

previous approaches. Furthermore, we present the
study of how the proposed scheme can be used in
real-world application such as “E- Healthcare”.

Figure 12: Use case (Healthcare Application)

Use Case (Healthcare Applications): The advent of
big data has ushered in a plethora of new
applications, including e-healthcare, smart homes,
and manufacturing. For a Big Data-assisted Cloud
environment, our proposed plan, SADS-Cloud,
provides numerous benefits and applications. We go
over some of the ways the proposed approach may
be implemented in the E-healthcare software, which
might have many different applications all around
the globe. Everyone involved—doctors, patients, and
others—can reap several advantages from e-
healthcare applications. Medical professionals use a
variety of devices to gather data regarding their
patients' health. The data in this paper belonged to
the hospitals, while the people who used it were the
patients, physicians, nurses, researchers, and
administrators. Chattaraj et al. (2018) and Masood
et al. (2018) state that healthcare records make up
CS, and that TC safeguards the privacy of data

owners and users. Benefits of using big data in
healthcare system development include simple
integration for users and computer scientists, quick
access to large amounts of stored data, and real-
time data analysis. Many advantages accrue to
patients who implement the proposed method,
including remote access to their medical records,
expedited assistance with treatment, security for
their personal information, and the ability to see
their own health statistics on a computer. An
electronic healthcare program's use case diagram is
shown in Figure 14.

A.Results Discussion: The goal is to make the process
of storing large amounts of data in the cloud less
vulnerable to security problems. For proof of how
well the proposed combined method works, we
compared it to some other security and grouping
techniques in a number of different ways. In

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 82

addition, the suggested compression method gives
better compression effectiveness to lower data and
security costs. Numbers 7, 8, 9, 10, 11, 12, and 13
show that the suggested SADS-Cloud method works
better than the old ones in terms of information loss,
compression ratio, speed, encryption time, decoding
time, and efficiency. These results were better than
what was possible before. So, the results of the
experiment showed that the suggested method is
better and safer than all the others that are already
out there. We got better results when we used the

three big methods we suggested in our plan. As a
result, we can say that our suggested plan meets all
of our goals. Table 4 compares the proposed method
to the old ones (SDES with HC and Triple DES) in
terms of all performance measures. The security of
our suggested work is checked against the most
recent state-of-the-art studies, and the results are
shown in Table 5. Lastly, we think that our plan for
this growing and new study will help to show how it
can be improved in the future.

Table.4 Comparison of the Proposed vs. Previous Approaches

PerformanceMetrics

Proposed vs. Previous Approaches

SDES with HC Triple DES Proposed

Information Loss 0.07% 0.175% 0.023%

Compression Ratio 0.0656% - 0.0585%

Throughput 3.5Mbps 2.18Mbps 7Mbps

3.625Mbps 2.225Mbps 7.18Mbps

Encryption Time 0.11s 0.175s 0.0687s

Decryption Time 0.054s 0.0943s 0.0325s

Efficiency 46.87s 35s 58.125s

Table. 5 Comparison of security properties with State of art papers.

Security Properties [(R.S.Pippal, [(Yeh [(X. Li, Y.-P. [(T.Truong, [(Nafis [(Ramya Devi Ours
C.D.Jaidhar 2014)] Xiong, J. M., T.Tran and and Vijaya
2013)] Ma 2012)] A, D.Duong Biswas Chamundeeswari

2017)] 2019)] 2018)]

Insider attack

Known-key attack

Replay attack

√

√

√

*

√

√

√

√

√

√

√

√

√

√

*

√

√

*

√

√

√

Perfect forward
secrecy

√ * √ √ * √ √

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 83

Mutual
authentication

√ √ * √ * √ √

Offline password
guessing attack

* * * * * * √

User impersonation
attack

* * * * * √ √

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 84

Note. √ means that the scheme can provide the corresponding security property, and * indicates that it cannot
achieve this.

2. CONCLUSION AND FUTUREWORK

In this study, we talked about two important
issues: user privacy and data protection in a Cloud
setting that uses Big Data. This research talks about
three ways to handle big data: managing it in the
cloud, sharing it with users, and getting data owners
to send it to other people. We suggested SHA-3
hashing as a safe way to authenticate users. This
method would hash the user's message and store it
in both TC and CS. The people who own the data
send it to the cloud computer safely. The LZMA
method is used to compress data so that the most of
the cloud storing space that big data makes available
is used. Next, we used SALSA20 Encryption
MapReduce to encrypt the data. This makes the
process of encrypting and decrypting the data much
faster. The info is sent to CS once the encryption
process is done. Before requests to get data can be
handled, users must be verified. Once the file has
been found, the secret keystream is used to read it.
We looked at two ways to handle Big Data in the
cloud: grouping with DBSCAN and indexing with
Fractal Index Tree. The work that was recommended
was done by our team on E-healthcare apps. We
measured and compared things like speed, efficiency,
information loss, compression ratio, and the time it
takes to secure and decode data.

That way, encryption and decoding will be even
faster. We plan to try this method with other
encryption methods and work on more real-world
uses in the future.

REFERENCES

[1] Aditham, Santosh, and Nagarajan
Ranganathan. 2018. “A System Architecture
for the Detection of Insider Attacks in Big Data
Systems.” IEEE Transactions on Dependable
and Secure Computing 15 (6): 974–87.
https://doi.org/10.1109/TDSC.2017.2768533.

[2] Adnan, Nur Afifah Nadzirah, and Suriyani

Ariffin. 2019. “Big Data Security in the Web-
Based Cloud Storage System Using 3d-Aes
Block Cipher Cryptography Algorithm.”
Communications in Computer and
Information Science 937: 309–21.
https://doi.org/10.1007/978-981-13-3441-
2_24.

[3] Bearman, P. 2015. “Big

Data and Historical

Social Science.” Big Data

& Society 2 (2): 1–5.

Bholat, D. 2015. “Big

Data and Central Banks.”

Bank of England

Quarterly Bulletin 55 (1):

86–93.

[4] Bronson, K., & Knezevic, I. 2016. “Big Data in
Food and Agriculture.” Big Data & Society 3 (1):
1–5.

[5] Castiglione, Arcangelo, Raffaele Pizzolante,
Alfredo De Santis, Bruno Carpentieri, Aniello
Castiglione, and Francesco Palmieri. 2015.
“Cloud-Based Adaptive Compression and
Secure Management Services for 3D
Healthcare Data.” Future Generation
Computer Systems 43–44: 120–34.
https://doi.org/10.1016/j.future.2014.07.001.

[6] Chattaraj, Durbadal, Monalisa Sarma, Ashok
Kumar Das, Neeraj Kumar, Joel J.P.C.
Rodrigues, and Youngho Park. 2018. “HEAP:
An Efficient and Fault-Tolerant Authentication
and Key Exchange Protocol for Hadoop-
Assisted Big Data Platform.” IEEE Access 6:
75342–82.
https://doi.org/10.1109/ACCESS.2018.28831
05.

ISSN: 2057-5688

Volume XIII Issue IV 2021 October http://ijte.uk/ 85

[7] Fan, Kai, Shuyang Lou, Ruidan Su, Hui Li,
and Yintang Yang. 2018. “Secure and
Private Key Management Scheme in Big
Data Networking.” Peer-to-Peer
Networking and Applications 11 (5): 992–99.
https://doi.org/10.1007/s12083-017-0579-z.

[8] Gai, Keke, and Meikang Qiu. 2018. “Blend
Arithmetic Operations on Tensor-Based Fully
Homomorphic Encryption Over Real
Numbers.” IEEE Transactions on Industrial
Informatics 14 (8): 3590–98.
https://doi.org/10.1109/TII.2017.2780885.

[9] Gai, Keke, Meikang Qiu, and Hui Zhao. 2018.
“Energy-Aware Task Assignment for Mobile
Cyber-Enabled Applications in
Heterogeneous Cloud Computing.” J.
Parallel Distrib. Comput. 111: 126–35.
https://doi.org/10.1016/j.jpdc.2017.08.001.

[10]Gai, Keke, Meikang Qiu, Hui Zhao, Lixin Tao,
and Ziliang Zong. 2016. “Dynamic Energy-
Aware Cloudlet-Based Mobile Cloud
Computing Model for Green Computing.”
Journal of Network and Computer Applications
59: 46–54.
https://doi.org/10.1016/j.jnca.2015.05.016.

[11]Goyal, Vikas, and Chander Kant. 2018. “An
Effective Hybrid Encryption Algorithm for
Ensuring Cloud Data Security.” Advances in
Intelligent Systems and Computing 654: 195–
210. https://doi.org/10.1007/978-981-10-
6620- 7_20.

[12]Hababeh, Ismail, Ammar Gharaibeh, Samer
Nofal, and Issa Khalil. 2019. “An Integrated
Methodology for Big Data Classification and
Security for Improving Cloud Systems Data
Mobility.” IEEE Access 7 (c): 9153–
63.https://doi.org/10.1109/ACCESS.2018.2890
099.

[13]Hadj, Maryem Ait El, Mohammed Erradi,
Ahmed Khoumsi, and Yahya Benkaouz. 2019.
“Validation and Correction of Large Security
Policies: A Clustering and Access Log Based

Approach.” Proceedings - 2018 IEEE
International Conference on Big Data, Big Data
2018, no. 1: 5330–32.
https://doi.org/10.1109/BigData.2018.862261
0.

[14]Hu, Chunqiang, Wei Li, Xiuzhen Cheng, Jiguo
Yu, Shengling Wang, and Rongfang Bie. 2017.
“A Secure and Verifiable Access Control
Scheme for Big Data Storage in Clouds.” IEEE
Transactions on Big Data 4 (3): 341–55.
https://doi.org/10.1109/tbdata.2016.2621106.

[15]Huang, Xinyi, Joseph K. Liu, Shaohua Tang,
Yang Xiang, Kaitai Liang, Li Xu, and Jianying
Zhou. 2015. “Cost-Effective Authentic and
Anonymous Data Sharing with Forward
Security.” IEEE Transactions on Computers 64
(4): 971–83.
https://doi.org/10.1109/TC.2014.2315619.

	1.INTRODUCTION
	2.RELATED WORK
	3.PROBLEM STATEMENT
	4.PROPOSED WORK
	5.EXPERIMENTAL RESULT
	Table.3. Drawbacks of Existing Approaches
	Contributions
	Drawback
	SDES with HC
	(1). Implement SDES for file encryption
	(2). Apply HC for encrypted data compression
	Triple DES
	(3). Anonymization
	Table.4 Comparison of the Proposed vs. Previous Ap

	2.CONCLUSION AND FUTURE WORK
	REFERENCES

