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ABSTRACT:

Multiple approaches to use deep learning
for image restoration have recently been
proposed. Training such approaches
requires well registered pairs of high and
low quality images. While this is easily
achievable for many imaging modalities,
e.g. fluorescence light microscopy, for
others it is not. Cryo-transmission electron
microscopy (cryo-TEM) could profoundly
benefit from improved denoising methods,
unfortunately it is one of the latter. Here
we show how recent advances in network
training for image restoration tasks, i.e.
denoising, can be applied to cryo-TEM
data. We describe our proposed method
and show how it can be applied to single
cryo-TEM projections and whole cryo-
tomographic  image  volumes.  Our
proposed restoration method dramatically
increases contrast in cryo-TEM images,
which improves the interpretability of the
acquired data. Further more we show that
automated downstream processing on
restored image data, demonstrated on a
dense segmentation task, leads to
improved results.

Index Terms— image restoration, cryo-
electron microscopy, deep learning, denoising

I. INTRODUCTION:

Modern cryo-transmission electron
microscopy (cryoTEM) enables the

observation of biological structures in their
native state at high resolution. In order to
prevent sample destruction during image
acquisition, the total electron dose needs to
be restricted . This restriction results in
noisy, low contrast acquisitions. In
practice, electron microscopists typically
acquire defocused images to trade
resolution for increased contrast. Hence,
the existence of better performing image
restoration methods would enable image
acquisitions at low electron dose with
reduced defocus and therefore also at
elevated resolution. For fluorescence
microscopy data, deep learning can be
used for content-aware image restoration
(CARE). Data for training CARE
networks requires adequately imaged or
synthetically generated pairs at low and
high quality. The ideas presented in do not
translate to cryo-TEM data, where the
before mentioned electron dose prevents
the acquisition of non-noisy ground truth
images. Here we present cryo-CARE, a
way to train contentaware restoration
networks for cryoTEM data. Cryo-CARE
can be trained by using registered pairs of
noisy images, an idea that was recently
introduced in the context of real-world
RGB and MRI images. More concretely,
we show how single TEM projections and
whole tomographic volumes can be
denoised using a strong, learned, and
content-aware prior. We compare our
results to simple baseline methods such as
median-filtering or NAD. Despite their
simplicity, these methods are widely used

648



*o

IJTE

by cryo-TEM experts to improve the
interpretability of their data. Furthermore,
we show that automated downstream
processing on restored image data leads to
significantly improved results.

II. LITERATURE SURVEY:

Cryo-electron microscopy Single particle
analysis (SPA): Development of cryo-EM
started in  1970s, following the
development of other techniques for macro
molecular structure determination. X-ray
crystallography is one of the most prolific
methods in structural biology and was
used to solve most of the known structures
today. However,it has its own limitations
the main of which is the requirement for a
crystallized specimen. SPA was developed
as an alternative tool based on TEM. It
uses random 2Dprojections of individual
particles which when computationally
combined can generate a3D reconstruction
of the target structure (Nogales and
Scheres, 2015). In 1968, De Rosier and
Klug managed to get a 3D electron
microscopy reconstruction of the helical
assembly of a T4 bacteriophage tail (De
Rosier and Klug, 1968). A few years later,
Henderson and Unwin determined the
structure of bacteriorhodopsin at 7 A
resolution using 2D electron
crystallography (Henderson and Unwin,
1975). This effort was the first glimpse on
a membrane protein structure solved by
EM. In fact, a few more structures came
along using electron crystallography but It
was limited due to difficulties in producing
well- ordered 2D crystals and obtaining a
sufficient high resolution in electron micro
graphs at high tilt angles. In the 1980s, the
concept of SPA was introduced with the
ability to get a structure from micro graphs
containing randomly oriented particles
(Frank and van Heel, 1982; van Heel and
Frank, 1981). Initially the samples were
embedded in heavy metal salts (negative
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staining) in order to increase the contrast
and make them compatible with the
vacuum environment inside the TEM.
However, negative staining limited the
achievable resolution to about 2 nm(the
staining salts grain size). The first attempt
in observing hydrated samples was in 1972
by Matricide et al. They showed that fully
hydrated catalase crystals can diffract
electrons to high resolution
(Matricardietal.,1972).

III.  EXISTING METHODOLOGY:

In this section, we introduce the proposed
model for depth map restoration. We first
introduce the detailed formulation of our
model. Then, we provide a task driven
training method to learn stage-wise model
parameters. With the learned stage-wise
parameters, guided depth restoration can
be achieved in only a few iterations

Weighted analysis sparse
representation model :

How to take full advantage of the
information from the guided image is the
key issue in guided image restoration.
Many previous optimization-based
methods promote discontinuity between
intensity and depth maps by using
guidance related weights to regularize
pixel-pair wise differences. To better
model the dependency between intensity
and depth images, we propose the
following weighted analysis prior model:
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Fig 1. Flowchart of the proposed method.

where w, p denotes the standard inner
product. The weight wi € RN is a column
vector associated with each pixel in the
intensity image g, which is controlled by
the parameter Pi. pi(x; pi, ai) is also a
column vector by point-wisely applying
the penalty function pi to the filter
response pi x, i.e.,

pi(x; pi, ai) = (pi((pi x)1), ==, pi((pi
x)N )T € RN

Nonline are Guidance Image Fidelity 7
where denotes the convolution operator,
and the penalty function pi is
parameterized by ai. Note that in a
standard analysis prior model, the weight
wi is given as a constant. However, in our
proposed model, wi is defined based on
the local structure of intensity image, such
that wi — 1 at homogeneous regions, and
wi — 0 at edges. As a consequence, the
resulting weighted analysis model will
penalize high depth discontinuities at
homogeneous regions and allow sharp
depth jumps at the corresponding edges.
By plugging the proposed analysis prior
model (2.3) into a variational framework,
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we arrive at the following functional Most
penalty functions used for natural image
restoration as well as guided depth map
refinement favour small filter responses,
and accordingly smooth image edges.
While, Chen et al. [26] found that the
behaviour of penalty functions learned
from training data is actually very complex.
Though most of the penalty functions tend
to shrink the filter response to promote
smoothness, there are also some penalty
functions which will enlarge filter
responses in certain ranges. Such an
expansion behaviour is helpful to generate
sharper image edges. In order to generate
high-quality depth map with sharp edges,
we follow [26] and investigate penalty
functions with flexible shapes. As in both
training and test phases (e.g., see (2.10)),
the proposed model explicitly involves the
first-order derivative of the penalty
function pi, we alternatively focus on the
derivative function @i = p J i , which is
known as the influence function [26] and
can be parameterized.

IV.  PROPOSED METHODOLOGY:

Image restoration, including image
denoising, super resolution, inpainting, and
so on, is a well-studied problem in
computer vision and image processing, as
well as a test bed for low-level image
modelling algorithms. In this work, we
propose a very deep fully convolutional
auto-encoder  network  for  image
restoration, which is a encoding-decoding
framework with symmetric convolutional-
deconvolutional layers. In other words, the
network is composed of multiple layers of
convolution and de-convolution operators,
learning  end-to-end mappings from
corrupted images to the original ones. The
convolutional ~ layers  capture  the
abstraction of image contents while
eliminating corruptions. Deconvolutional
layers have the capability to up sample the
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feature maps and recover the image details.

To deal with the problem that deeper
networks tend to be more difficult to train,
we propose to symmetrically link
convolutional and deconvolutional layers
with skip-layer connections, with which
the training converges much faster and
attains better results.

V. CONCLUSION AND RESULT:

In this publication we show how content-
aware image restoration can successfully
be applied to cryo-TEM data. EM experts
are currently using relatively simple
filtering techniques, i.e. NAD, before
manually investigating acquired data.
CryoCARE, as we have shown, leads to
highly contrasted and well resolved 2D
and 3D data. Our experiments also show
that P2P reconstructions are not ideal for
tomographic reconstructions. Nevertheless,
with T2T we can offer a simple and
powerful tool for content-aware
tomographic restorations. We therefore
believe that cryo-CARE will facilitate
manual data browsing, a step that can
hardly be wunderestimated when many
and/or large volumes have to be browsed
for regions of interest. Additionally we
showed that cryo-CARE restorations can
lead to highly improved automated
analysis results. a preprocessing step that
does not need human labels and a analysis
stage that is likely to require lesser
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amounts of training data. We are confident

that cryo-CARE will rapidly find
application in the cryo-EM field. It
improves data-browsing, creates well

contrasted, high SNR images for improved
visualization of single
projections/tomograms, and improves the
performance of automated analysis
pipelines, hence it enables to work
efficiently on much larger bodies of data.
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