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Abstract
Monitoring and controlling Additive Manufacturing (AM) processes play a critical role in

enabling the production of quality parts. AM processes generate large volumes of structured and
unstructured in-situ measurement data. The ability to analyze this volume and variety of data in
real-time is necessary for effective closed-loop control and decision-making. Existing control
architectures are unable to handle this level of data volume and speed. This paper investigates the
functional and computational requirements for real-time closed-loop AM process control. The
paper uses those requirements to propose a function architecture for AM process monitoring and
control. That architecture leads to a fog-computing solution to address the big data and real-time
control challenges.
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1. Introduction
Within the next decade, the goal of AM is to become one of the primary manufacturing

processes. Requirements for achieving this goal include 1) AM software for high-complexity
product design and engineering, 2) AM machines for high-quality and low-cost part fabrication,
3) AM sensors for in-situ monitoring of various AM processes, and 4) controllers that can
analyze big data and make optimal decisions in real-time [1]. Vendors have been providing
similar capabilities to address these requirements for traditional manufacturing for decades. So
what is different about AM?

AM is an additive fabrication process. AM processes create parts directly from 3D
computer-aided-design (CAD) files. For example, powder bed fusion adds, and then melts, metal
or polymer powders in a layer-upon-layer fashion. The melting process varies depending on the
technology underlying the heat source used in the process. Despite of the enormous potential
benefits of AM, manufacturers are facing a major problem of the production technology: even
under the identical process parameters and machine conditions, the quality of the AM products
can vary substantially and often unacceptably [2]. Various factors contribute to this problem,
including the variability in feedstock materials, process parameters, and build function execution.
To reduce the part quality uncertainty, AM process monitoring and control become critical.

Unlike the process monitoring of subtractive processes, AM in-situ monitoring relies on
multi-modal sensors that generate a large amount of 1d, 2d and 3d data during fabrication. The
data are used to estimate the current states of both AM processes and parts, as well as to predict
the final states of the parts. The in-situ data can also be used for part qualification and to improve
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the design and engineering of future AM products.
In addition, AM requires multi-loop feedback control, meaning that the measurement and

quality monitoring data are used for process control and decision making at multiple sampling
rates. AM in-situ monitoring data, generated in real-time from various sensors at different
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intervals, becomes feedback to machine controllers. The controllers analyze the data, modify
process parameters in real-time or near real-time, or stop the build as necessary.

In this paper, we focus on defining a reference architecture for AM process monitoring
and control, including 1) identifying the relevant analytics and control functions, 2) proposing a
control architecture, and 3) using fog computing to implement them. In Section 2, we describe
the limitation of the traditional hierarchical control architecture. In Section 3, we present a multi-
loop control framework for AM process monitoring and control; Section 4 describes the
computing requirements for near real-time process monitoring and control functions; Section 5
presents a fog computing based architecture for AM process monitoring and control

2. Is ISA 95 the Right, Control Architecture for AM
The ISA Model

For decades, the ISA 95 model defined by the International Society of Automation (ISA)
has been the hierarchical-control choice for traditional manufacturing systems [3]. ISA 95
divides the functions of those systems into levels based on three aligned decompositions: spatial,
functional, and temporal. In Figure 1, the triangle represents the ISA functional hierarchical
decomposition, with the temporal aspects (the timeframes) of the hierarchy shown on the left. It
is important to note that those timeframes are holdovers from the time when humans performed
those functions. The spatial aspects, which are not shown, go from an individual machine to an
entire factory. The shaded boxes on the right of Figure 1 show the various software applications
that have been developed to implement the functions in each level. That implementation is
constrained by the timeframe assigned to each level.

Figure 1. The ISA Hierarchy
The ISA views this functional hierarchy as a control hierarchy, meaning that each

function is associated with a controller. That controller’s job is to use the designated software
application to manage the execution of that function. There are rigid rules about 1) the kinds of
inter-level “command-feedback” communications and 2) the information exchanges between the
software applications that create those communications. As noted above, those rigid rules were
originally developed before the computer revolution, and well before the explosion of
commercially available, domain-specific, software applications [3].

Since ISA’s standardization, both the use of hierarchical principles and the ISA control
hierarchy itself have been adopted, and adapted, in many manufacturing domains. The domain-
specific software applications, which began to infiltrate the manufacturing sector in 1990s, were
run according to the predetermined ISA timeframes. For example, as shown in Figure 1, ERP
would run once a day, MES would run once an hour, and so on. Of course, once the required
integration problems were solved, these applications could have been run at any time. But, for a
variety of reasons mostly associated with keeping the four aspects in Figure 1 completely aligned,
they were not.
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Does ISA Work for AM
The beginnings of Industry 4.0, new advances in information technology, and a variety

of new AI tools are obviating the need for an AM-centric control architecture. A key point of
Industry
4.0 systems is decentralized, data-driven decision-making. The purpose is to make each entity
more autonomous, with the capability to communicate directly with any other part of the system
[3].

Advances in information technology include cloud services, camera sensors, fog
computing, and edge computing. Cloud services provide a good option for implementing AM
design and AM engineering functions. The economic benefits of using cloud services and
computing come from efficient resource allocation. Resource management plays a major part in
increasing system performance, thereby enhancing user satisfaction [4]. Nevertheless, cloud
services naturally clash with both the new Industry 4.0 design principles and the need for reliable,
real-time control of AM machines and processes during the “build” function [5].

That need depends on the ability to analyze the large amounts of in-situ measurement
data being collected by a variety of cameras. Since there are very few physics-based AM process
models, that analysis, and hence control, warrants the use of machine learning tools. Many of
these tools exist in the cloud. Hence the in-situ data collected at level 1 must also be sent directly
to level 3 and 4 functions for off-line analysis. While the cloud services can certainly be used for
understanding AM processes and analyzing the final-part’s quality for inspection purposes, they
cannot be used for real-time control. For real-time control, in-situ measurement, analysis, and
prediction are required to optimize the process parameters and thereby control the machine and
process. These real-time or near real-time functions also demand intensive computation power,
which cannot be provided by typical edge nodes, such as PLCs or AM machine on-board
computing units.

In the remainder of the paper, we first propose a multi-loop feedback control architecture
for the “build” monitoring and control. We then propose the use of both fog and edge computing
as a way of implementing the corresponding functions.

3. Multi-Loop AM Process Monitoring and Control Functions
The proposed multi-loop AM process and control architecture is shown in Figure 2. It has

three major loops: 1) sub-second real-time control 2) Layer wise scan optimization and 3) offline
build planning and data driven modeling. Process Monitoring provides multirate data curation
functions, including sensing, data acquisition, data fusion and data analytics.

The outmost loop “Build Planning” is an engineering task, usually done with human in
the loop. The main outputs of Build Planning include 1) a build plan - the process parameters and
other information needed to fabricate the product, and 2) the information (models) used to assess
the current state of the process and the parts, and to predict the final state of those parts. The
planning process involves two major types of tasks: 1) process specific tasks including lattice,
support design and build orientation selection; 2) machine specific tasks to convert the build plan
into the formats required by a particular AM machine, usually done by using machine specific
software tools.

The innermost loop is for real-time control. Based on in-situ feedback measurements,
real- time controllers change the process parameters to stabilize process. The feedback
measurements can include melt pool temperatures and sizes, sampled at many KHz. And the
process parameters include energy power, material feeding rate etc. As of today, only a few AM
machine models have the real-time feedback control capabilities.
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The middle loop “Layer-wise Control and Planning” makes adjustments of scan path and process
parameters for the next layer based on the monitoring information from the previous layers. For
PBF, this task has to be done before the recoating process finishes to avoid build time increasing.

The multi-loop monitoring and control functions use a variety of machine learning
techniques to determine the current states of the process and the parts, to make a prediction about
the final state of the part and to generate real-time or near real-time control to bring back the part
quality from deviations. The models used for real-time and near real-time control can be learned
from past builds and simulations which are usually trained in clouds. The process monitoring
functions supporting real-time or near real-time control have to provide process and part state
estimation within micro seconds or several seconds to enable the feedback loop. For layer-wise
re- planning, multi-modal sensor fusion and model predictive control are involved for defect
detection and scan path re-planning. These tasks are also computational intensive, beyond the
capability of the traditional edge computation nodes such as PLCs or embedded controllers. In
order to identify appropriate computation infrastructure for the AM process monitoring and
control, we will first analyze the functions for in-situ monitoring and control and group them in a
function architecture, which will be described in this section.

Real-time functions include data acquisition from in-situ monitoring system,
measurement data preprocessing - cleaning and tagging, melt pool geometry characterization,
fast spectrum analysis of acoustic measurements, anomaly detection, real-time feedback control
generation, and emergency reaction, such as build stop.

Near real-time functions fuse the process monitoring data obtained from previous layers,
conduct layer-wise process and part state evaluation and make decision if the build should be
continued or stopped. If the build shall continue, a scan plan adjustment function may be
necessary based on the evaluation or prediction of part quality. With hybrid manufacturing, the
layer-wise controller can make a decision to machine off the defected layers and then resume the
layer-by- layer process.

Offline functions include data analytics for engineering decision. In-situ monitoring and
control data from multiple past builds, as well as the part development lifecycle data, are
aggregated for analysis. The data can be used for training to correlate process settings with
process signatures, microstructure properties and mechanical properties. The resulted models are
used for build plan generation. Machine learning can also be used to train models which are used
in real or near real-time process monitoring and control.

In this paper, we focus on the analysis and prediction functions for in-process control.
Many of the tasks associated with these functions are shown in Figure 3, including tasks in the
real-time group and tasks in the near real-time-group. In the remainder of this paper, we will
discuss the near real-time functions, which demand the use of fog computing for implementation.
Near Real-Time Functions

The main purpose of the near real-time process monitoring and control functions is for
layerwise decision making. Multiple commercial AM systems and third party in-situ monitoring
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systems are equipped with such capability. The cycle time for layerwise decision making varies
from seconds to minutes, depending on the design of the parts, the scan patterns and the process
parameters. The middle layer of Figure 3 lists the mostly reported layerwise data analytics and
control functions. They are sensor data fusion, residual stress estimation, 3d model
reconstruction, defect detection, process and part quality prediction, and layer parameters
optimization.

Multiple in-situ sensors are being utilized in AM machine for monitoring and controlling
AM part quality. The sampling rates and volumes of the sensor data vary. For real-time
monitoring and control, these sensors data such as temperature, melt pool geometry, acoustic
signal, process parameters, etc. need to be registered correctly and fused effectively. Sensors data
fusion is a major area of research for better understanding of the AM process [6, 7].

3D in-situ measurement such as Optical coherence tomography (OCT) is used for both
surface and inner-structure defect detection, as well as dimension analysis. Due to its high
resolution and non-destructive nature, it also useful for surface-void detection, loose powder
detection, and subsurface feature detection. OCT is also used to find cracks and un-melted
powder areas during production [8, 9].

Accurate residual stress estimation is a key step in attaining maximum dimensional
accuracy and avoiding early fatigue failure [10]. Many process parameters affect the residual
stress in AM [11]. The estimated residual stress based on in-situ thermal measurements can be
used as the inputs to re- plan scan paths and optimize process parameters for the next build layer.
Therefore, they work as a promising tool for AM part quality control.

Finding defects using layerwise images provides timely control over the ongoing
manufacturing process. By detecting a catastrophic defect during the process, we can stop a
failed build early, reduce the cost and avoid the waste. There are many existing methods to find
defects such as ANN, Bayesian classifier, support vector machines (SVM), and Convolutional
Neural Networks (CNN). CNNs earned attention due to the accuracy and fast execution time as
compared to other methods. The execution speed of a CNN is enhanced through the use of high-
performance computing resources such as advanced GPU. The output of the function can be used
for (layer- wise) process control, supplementary process decisions, or remedial actions [12-14].
Some researchers use an acoustic signal for in-situ quality prediction in AM using deep learning
[15-16]. Automatic virtual metrology (AVM) is a technique in which the quality of the
manufactured part can be predicted without actual manufacturing by utilizing previously
obtained in-process measurements. For AM quality prediction, the AVM system is based on in-
situ data
sensed during prior manufacturing [17-18].

Layerwise parameter-optimization functions re-plan the process settings for the
subsequent layer. These functions consider outputs from the quality prediction, OCT, the residual
stress estimation, and the defect detection functions, and perform path re-planning using ANNs
or genetic algorithms [19].

Today’s AM machines are instrumented with a myriad of sensors. In addition, many of
3rd party provided sensors can be easily integrated which generate and produce data over
extremely short periods of time. Not like the traditional machine tools using 1d sensors, many of
today’s AM-sensors are generating vast amounts of 2d (image data) and even 3d data at
increasingly faster rates – much different than the traditional numerical data. Tens of thousands
images from high speed co-axial cameras are generated each layer. In addition, staring cameras
produces multiple high-definition global view images each layer. Fusing the images with the
machine control commands and other sensor measurements are critical for layer-wise control,
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planning and
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decision making. The computation requirements to perform the data analytics and control are very
high.

4. Computing Requirements in AM
Computational speed is the major issue for the real-time control system. The traditional

method can deliver precise melt pool measurement but deficiencies of processing efficiency. For
real-time control in AM, a major problem is that current single node systems cannot meet the
real- time computing requirements. For example, a traditional melt pool classification method
takes 3.5 milliseconds to process a melt pool image. If a co-axial camera generates
approximately 3000 images each layer, classifying the full layer of melt pool images would
require approximately 10 seconds. This calculated time does not include the data transfer time;
sending such a large amount of data to the cloud for processing will require additional time for
transferring and processing. Due to these problems, currently manufacturing automation systems
fail to meet the AM requirements for real-time monitoring and control [20].

The computing requirements for AM processes are dictated by the volume, velocity,
variety, and veracity of the data. According to Wang et al., there are up to 2.3 trillion voxels in a
typical build volume; about 600 variables logged during AM processes on a per seconds basis,
giving up to 300 MB of data per build; and up to 0.5 TB of data collected per build using in-situ
monitoring [21]. Photodiodes and pyrometers are the most common devices used in SLM
monitoring systems due to their fast response and easy integration. Both devices boast
acquisition rates above 50 kHz. If process is monitored with a high-resolution camera (20 kHz or
more) for a few seconds, even for very short time interval, several GB of data per second can be
collected.

Figure 4 shows the correlation between camera frame rate and resulting data. Clearly the
high volume of data cannot be transferred using current industrial interface communication
protocols [22]. limit defined by communication protocol; for example, USB3.0 can handle a
maximum rate of 640 Mbps. Studies show that data rate is fairly higher than range of the current
available communication protocol [22]. AM in-situ monitoring data processing for near real-time
control is a big data problem. In the following sections we propose an AM process monitoring
and control architecture based on fog computing.

5. Fog Computing and Architecture
Owing to the amount of data and the data’s dynamic nature, processing it within the time

constraints required for real-time applications is a big challenge in AM. In the AM process, the
huge amount of data produced in a very short time leads to time constraints and latency problems.
Both problems make it impractical to use a cloud-computing architecture for real-time, process-
control applications.

The cloud model can be organized using three major concepts: infrastructure as a service,
platform as service, and software as service. Some of the main benefits of the cloud model are
virtualization, scalability, on-demand self-service resource pooling, and location freedom. In
contrast with cloud-based manufacturing, fog computing shifts the heavy data workload from the
centralized cloud to near edge devices. Due to the latency problem, the amount of data
communicated using the cloud must be reduced for online, real-time machine monitoring,
diagnosis and control. In fog-empowered architectures, manufacturers can save sensitive data on
local machines while using the intelligence, data analysis and training applications provided by
high-performance, cloud computing [23].
Fog Based Systems

Fog computing works as an intermediate layer between IIoT (Industrial Internet of
Things) and cloud for more responsive services. In fog computing, each computer node works
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independently to provide intelligence on the outer edge of ubiquitous networks, without requiring
a persistent network connection. This reduces network traffic and enhances scalability and
security [24-25]. Fog computing is a geographically distributed computing architecture with a
resource pool consisting of one or more ubiquitously connected heterogeneous devices
(including edge devices) at the edge of the network and not exclusively seamlessly backed by
cloud service. The architecture provides elastic computation, storage and communication in
isolated environments to several clients in proximity [26].

Wu et al. proposed a real-time remote computational framework based on fog
architecture for process monitoring and prognosis in cyber physical system (CPS). That
framework utilized the wireless sensors, cloud, and machine learning [27-28]. Fog was shown to
perform well in smart city applications including data demonstration, feature extraction,
anomalous and hazardous event classification, and security measures. A fog-based distributed
architecture was proposed to support the data collection and analysis in fast response applications
[29-30]. A combination of PMML-encoded ML models and fog computing was proposed for
gaining the key ideas of decentralization, security, reliability, and privacy in Industry 4.0 [31].
We could not find any literature on fog-based functional and control architectures specialized to
AM.

Fog-centered computing models are currently utilized more and more to fulfill the
requirement of IIoT, CPS, and mobile computing. It is suitable for applications where instant
feedback and response are required. To handle time limitations, fog computing architecture plays
an important role in real-time application [32]. In the remainder of this paper, we will discuss our
proposed architecture to deal with AM, time constraints.
Proposed Fog Based Architecture

The proposed architecture is a combination of edge, fog, and cloud methods, as shown in
Figure 5, which mirrors the temporal decomposition of control functions shown in Figure 3. As
shown in Figure 5, The Intelligent In-Situ Monitoring and Computing System (IIMCS)
comprises five major layers: sensors, intelligent edge per sample, intelligent fog per layer and per
build decision making, and cloud. The corresponding data residency is divided in terms of
sources, models, knowledge and database; the time flow represents the general time required by
each component of the IIMS data analytics function for processing.

Intelligent Edge Per Sample
In AM, advanced, high-speed sensors capture variations in the process to improve quality

control at the lowest possible scale. These sensors capture huge amounts of image data (on the
order of gigabytes) within an extremely short period of time (on the order of seconds). To 1)
transfer this amount data to the cloud, then 2) to analyze the data using some kind of AI tool, and,
finally 3) to return it to AM controller who then must make a decision will certainly take more
than the microseconds allowed for the analysis of each sample (on the order of microseconds).
Consequently, utilizing service to perform that analysis, the cloud is not possible – primarily due
to communication delays (latency). The reason is that no currently available communication
protocol supports the transfer of that amount of data involved within the time constraints
required for real-time AM quality control.

As an example, we describe a concept for a new, open-source, smart camera that
eliminates the need to transfer image data to the cloud (see Figure 6 left side). Our smart camera
is an edge device that both collects and analyzes melt-pool images in real time. Analysis
operations are performed as part of the real-time, monitoring functions shown in Figure 3. The
smart camera performs various different kinds of operations, such as anomaly detection,
preprocessing and feature extraction, on the images obtained in monitoring the melt pool.
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If no anomaly is detected, the smart camera outputs the feature data to the fog layer for
further analysis. If an anomaly is detected, the relevant raw data is sent to the fog layer for
further analysis. The smart cameras only send raw data from involved images to the fog layer for
in-depth analysis if they find abnormalities in the melt pool.
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Intelligent Fog Per Layer
This layer consist of multiple near real-time functions run on the dedicated fog node,

which will likely reside on the AM process control computer. This lower layer of fog fuses the
data from multiple sensor systems as shown in Figure 6. It then uses the data to control multiple
systems including the scanning system, the environmental system, and in-situ systems [33]. There
are many, third-party, commercial, in-situ control systems available such as SLM solutions,
Stratonics , EOSSTATE, QM melt pool 3D and Sigma Labs [34]. To achieve successful real-time
control, data from the AM system, as well as from any utilized commercial and custom systems,
needs to be fused for further analysis.

This fog component deals with the layer-by-layer data of the AM process. The area of the
melt pool and correlates that estimate with the current laser power and scan speed. Layerwise
data analytics provides the information needed to adjust the parameters before the next
fabrication layer begins, if that information indicated any kind of problem in the process. Our
design provides feedback in real-time. Thus we need to analyze the layerwise data and provide
suggestions or warnings to a feedback controller for better process parameters adjustment as
soon as possible. Layerwise analysis function data transfer to the parameters adjustment as soon
as possible. Layerwise analysis function data transfer to the next layer for build level decision.

Intelligent Fog Per Build Decision Making
The intelligent fog per build consists of knowledge decides whether to continue or stop

the process, based on current data. This component controls the main functionalities of the
proposed architecture. The designed architecture performs all these tasks locally within the
boundary of the factory, which enhances the trust of manufactures in term of data security. Due
to privacy and security concerns, technology manufacturers do not want to send their data
outside the factory.
Why Fog-based Architecture?

The proposed architecture is a combination of cloud and fog services. The advantages of
fog computing are location awareness, mobility, low latency and physical dispersion. Fog
computing is not an alternative to cloud computing. Rather, it eliminates the drawbacks of cloud
computing and improves the efficiency [4]. Fog computing has the following advantages
compared to cloud- based solutions: [35, 36]

1) Latency Constraint
Fog computing has the capability of solving any latency issues by

performing data analysis, control and time-restricted tasks near to the end user. Cloud
technology often fails in time-restricted applications because it works in a centralized
fashion; all processing is done in a distant location requiring a substantial amount of time
to transfer data, process data, and send it back to the user’s location. In AM quality-
control processes continuously generate huge amounts of data and require near
instantaneous feedback for effective quality control. Consequently, typical Cloud
technology, owing to its substantial latency, is not a feasible computing choice for AM
control.

2) Network Bandwidth Constraint
Fog supports hierarchical data processing in conjunction with the cloud. It

creates balance among application conditions and available computer resources by
allowing different processing at different levels or locations. In this way, fog reduces the
quantity of data transferred to the cloud that requires higher bandwidth. The frame rate is
very high for in-situ AM measurements, making it impossible to transfer these large
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amounts of data in a very short period to the cloud. Fog technologies, however, have the
capability to perform operations on large amounts of data without transferring them to the
cloud. In the suggested architecture, the fog dedicated layer handles the complex task of
data allocation for real-time analysis.

3) Resources Constrained Devices
Cameras and pyrometers are examples of resource-constrained devices

because they possess very small amounts of both processing power and storage memory.
That means the data they collect must be communicated somewhere and processed very
quickly. These devices typically are incapable of sending data to the cloud due to reasons
like power, bandwidth, and cost. Fog address this limitation.

4) Uninterrupted Service/Irregular Connectivity with Cloud
Fog systems provide services even when there is an irregular connection with

the cloud.
5) Security Challenges

Fog systems work as proxies for all limited-resource devices for software
and security authorization updates. Further, as limited-resource devices have poor
security capabilities, the fog system can provide antivirus scanners.

6) Reduce data movement across the network
By limiting data movement across the network, fog systems significantly reduce

network congestion, remove the drawbacks of centralized computing systems, allow the
necessary data to stay closer to the end user, and provide enhanced scalability arising
from the use of virtualized systems. Removes the core computing environment

By removing the central computing setting, fog systems make real-time
quality control in AM manufacturing possible.

7) Faster response
In addition to providing a sub-second response to end users, it also

delivers high levels of scalability, reliability and fault tolerance.

Conclusion
The proposed fog-based architecture addresses the challenges of the real-time quality

control for additive manufacturing using big data. The fog architecture shifts the high bandwidth
and latency-sensitive processing to near-the-edge devices in order to perform necessary functions
without sending data to the cloud. The intermediate layer of fog solves the problems of
insufficient bandwidth and latency for real-time data analytics and decision making applications
in the AM process. The proposed architecture also helps the machine builders, in-situ system
providers, and software vendors to understand the function requirements for better integration of
their products and services.
In future work, the proposed control architecture will be prototyped in a research environment
for validation, and performance will be measured and shared with the AM community.
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