
ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 36

Realization of Built-In Self Test (BIST) Enabled Memory(RAM)
Using VHDL and Implementation in Spartan6 FPGA board

Y.MOUNIKA GOWRI1, NAGA MALLIKARJUNA2
1PG Student, Dept of ECE, SITS, Kadapa, AP, India.

2Assistant Professor, Dept of ECE, SITS, Kadapa, AP, India.

Abstract— Nowadays for developing any
embedded system the microprocessor is used
extensively, but they comes to any developer as an
black-box in which signals are provided from one
side and corresponding output is extracted out from
other side. So if developer knows what is hardware
present inside the processor which he/she is
currently using, then it would be helpful for making
his/her design simple & optimized. In this paper,
we have represented the design and simulation
result of basic three elementary modules of
microprocessor i.e. ALU, RAM and Instruction
decoder and finally combined all three modules
using Structural modeling .This four bit processor
has been designed as a prototype for designing
advanced processors.

1. INTRODUCTION
For any kind of system, testing and fault

diagnosis play a significant role to identify
unwanted defects. There are some complicated
applications have severe cost constraint but still
require high-level of performance and safety.
Hence, the utmost concern is where the diagnosis
of the defects has to be done even under inadequate
resource and time. An approach to solve this
dilemma, namely BIST, has been widely
implemented in semiconductor industry. With a
built in test system positioned inside the circuit, the
analysis of every single part within the circuit
could become simple task as the period and cost for
testing are cut down. This BIST technology is
capable of saving the time and cost of maintenance
that also allow on line diagnosis, which can deal
with even greater advance of embedded systems in
future.

In order to fulfill the market need almost
every day novel products are through of and are
developed using top-notched technology. The first
and the foremost expectation from such products is,
they are expected to be super quick. To make any
product super responsive, the processing capacity
and the storage component play equal and vital role.
Apart from this, self-diagnosis has gaining
significant place in the development of the smart
products. The product capable of self-testing
reduces time to market, increases the live time and
also prevent the possible data loss in case if failure

occurs. Different testing mechanisms are employed
to implement self-diagnosing procedures in the
products. In this review paper we are about to
disclose a detailed analysis on different
methodologies reported for implementation of the
self-diagnosis procedures.
Fault models produce a direct function which is the
fault coverage of the test patterns generated by
TGP and apply to Circuit Under Test (CUT). There
are several classes of test patterns, e.g.
Deterministic test patterns, Algorithmic test
patterns, Exhaustive test patterns, Pseudo-
exhaustive test patterns, Pseudo-random test
patterns, Weighted pseudo-random test patterns
and Random test patterns. As a result, TPGs are
sometimes classified according to the class of test
patterns they produce.

In most ORA techniques, the output
responses of the CUT to the test patterns are
“compacted” into a “signature” which is compared
to the expected signature for the fault-free circuit.
As we shall see, the Pass/Fail indication is often
composed of a set of data bits that contain the
signature of the BIST sequence, rather than a single
Pass/ Fail bit. Note that the term compaction is
used rather than compression since compression
implies no loss of information; since most ORA
techniques incur some loss of information;
compaction is a more accurate term. Since all
ORAs perform data compaction, there will be some
loss of information. When the lost information
contains fault detection data, it is possible for the
BIST results to indicate that a faulty CUT is fault-
free. This is often referred to as fault masking or, in
the cases of some ORA techniques, signature
aliasing. A microprocessor control program
(embedded software) can be easily tailored to
different needs of a product line, allowing upgrades
in performance with minimal redesign of the
product. Different features can be implemented in
different models of a product line at negligible
production cost.

Microprocessor control of a system can
provide control strategies that would be impractical
to implement using electromechanical controls or
purpose-built electronic controls. For example, an
engine control system in an automobile can adjust
ignition timing based on engine speed, load on the

https://en.wikipedia.org/wiki/Embedded_software


ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 37

engine, ambient temperature, and any observed
tendency for knocking—allowing an automobile to
operate on a range of fuel grades. In the mid-1980s
to early 1990s, a crop of new high-performance
reduced instruction set computer (RISC)
microprocessors appeared, influenced by discrete
RISC-like CPU designs such as the IBM 801 and
others. RISC microprocessors were initially used in
special-purpose machines and Unix workstations,
but then gained wide acceptance in other roles. The
first commercial RISC microprocessor design was
released in 1984, by MIPS Computer Systems, the
32-bit R2000 (the R1000 was not released). In
1986, HP released its first system with a PA-
RISC CPU. In 1987, in the non-Unix Acorn
computers' 32-bit, then cache-less, ARM2-
based Acorn Archimedes became the first
commercial success using the ARM architecture,
then known as Acorn RISC Machine (ARM); first
silicon ARM1 in 1985. The R3000 made the design
truly practical, and the R4000 introduced the
world's first commercially available 64-bit RISC
microprocessor. Competing projects would result
in the IBM POWER and Sun SPARC architectures.
Soon every major vendor was releasing a RISC
design, including the AT&T CRISP, AMD
29000, Intel i860 and Intel i960, Motorola
88000, DEC Alpha. In the late 1990s, only two 64-
bit RISC architectures were still produced in
volume for non-embedded
applications: SPARC and Power ISA, but as ARM
has become increasingly powerful, in the early
2010s, it became the third RISC architecture in the
general computing segment.

2. DIGITAL SYSTEM TESTING
Digital Systems Testing

Reliable electronic systems are not only
needed in the areas where failures can lead to
catastrophic events but also increasingly required
in all application domains. A key requirement for
obtaining reliable electronic systems is the ability
to determine that the systems are error-free [7].
Although electronic systems contain usually both
hardware and software, the main interest of this
thesis is hardware testing and especially digital
hardware testing. Hardware testing is a process to
detect failures primarily due to manufacturing
defects as well as aging, environment effects and
others. It can be performed only after the design is
implemented on silicon by applying appropriate
stimuli and checking the responses. Generation of
such stimuli together with calculation of the
expected response is called test pattern generation.
Test patterns are in practice generated by an
automatic test pattern generation tool (ATPG) and

typically applied to the circuit using automatic test
equipment (ATE). Due to the increasing speed of
systems and external tester bandwidth limitations,
there exist approaches where the main functions of
the external tester have been moved onto the chip.
Such practice is generally known as built- in self-
test (BIST).

Test pattern generation belongs to a class
of computationally difficult problems, referred to
as NP-complete. Several approaches have been
developed to handle test generation for relatively
large combinational circuits in a reasonable time.
Test generation for large sequential circuits
remains, however, an unsolved problem, despite
rapid increase of computational power. According
to available test techniques can be classified into
the following categories:
1. Functional testing, which relies on exercising the
device under test (DUT) in its normal operational
mode, and consequently, at its rated operational
speed;
2. Testing for permanent structural faults (like
stuck-at, stuck- open, bridging faults) that do not
require the circuit to operate at rated speed during
test;
3. Testing based on interactive fault analysis in
which faults are derived from a simulation of the
defect generation mechanisms in an integrated
circuit (IC) (such faults tend to be permanent and
do not require the circuit to be tested at rated
speed);
4. Testing for delay faults that require the circuit to
operate at rated speed during test;
5. Current measurement based testing techniques,
which typically detect faulty circuits by measuring
the current drawn by the circuit under different
input conditions while the circuit is in the quiescent
state.
Failures and Fault models
A failure is defined as an incorrect response in the
behavior of the circuit.
According to there are two views of failures:
1. Physical/Design domain: defects (they produce a
deviation from specification)
 On the device level: gate oxide shorts, metal-

to-polysilicon shorts, cracks, seal leaks,
dielectric breakdown, impurities, bent-broken
leads, solder shorts and bonding.

 On the board level: missing component,
wrong component, miss-oriented component,
broken track, shorted tracks and open circuit.

 Incorrect design (functional defect).
 Wearout/environmental failures: temperature

related, high humidity, vibration, electrical
stress, crosstalk and radiation (alpha particles,
neutron bombardment).

https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/IBM_801
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Workstation
https://en.wikipedia.org/wiki/MIPS_Computer_Systems
https://en.wikipedia.org/wiki/R2000_(microprocessor)
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/Acorn_computers
https://en.wikipedia.org/wiki/Acorn_computers
https://en.wikipedia.org/wiki/ARM2
https://en.wikipedia.org/wiki/Acorn_Archimedes
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/R4000
https://en.wikipedia.org/wiki/IBM_POWER_Instruction_Set_Architecture
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/AT%26T_CRISP
https://en.wikipedia.org/wiki/AMD_29000
https://en.wikipedia.org/wiki/AMD_29000
https://en.wikipedia.org/wiki/Intel_i860
https://en.wikipedia.org/wiki/Intel_i960
https://en.wikipedia.org/wiki/Motorola_88000
https://en.wikipedia.org/wiki/Motorola_88000
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Power_ISA


ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 38

2. Logical domain: faults (structural faults). A fault
is a model that represents the effect of a failure by
means of the change that is produced in the system
signal.
 Stuck-at faults: single, multiple.
 Bridging faults: AND, OR, non-feedback and

feedback.
 Delay faults: gate and interconnect.
The oldest form of testing relies on a functional
approach, where the main idea is to exercise the
DUT in its normal operational mode. The main task
of functional testing is to verify that the circuit
operates according to its specifications. For
functional testing, the same set of test vectors that
was used by the designer for verification during the
design phase can be used. Functional testing can
cover a relatively large percentage of faults in an
IC but the disadvantage of this technique is the
large size of the test sequences needed to achieve
high test quality. Using this approach alone for
testing complex digital circuits is therefore
notpractical. Structural fault model based
techniques are the most investigated testing
techniques. The earliest and the most well-known
structural fault model is the single stuck-at (SSA)
fault model (also called single stuck line (SSL)
fault model), which assumes that the defect will
cause a line in the circuit to behave as if it is
permanently stuck at a logic value 0 (stuck-at-0) or
1 (stuck-at-1). The SSA model assumes that the
design contains only one fault. However, with
decreased device geometry and increased gate
density on the chip, the likelihood is greater that
more than one SSA fault can occur simultaneously
and they may mask each other in such a way that
the SSA test vectors cannot detect them. Therefore
it may be necessary to assume explicitly multiple
stuck-at faults as well.

The single stuck-at fault model became an
industrial standard in 1959. Experiments have
shown that this fault model can be very useful
(providing relatively high defect coverage) and can
be used even for identifying the presence of
multiple faults which can mask each other’s impact
on the circuit behavior. The possibility to analyze
the behavior of the circuit using Boolean algebra
has contributed to research in this domain very
much. There are several approaches to identify test
vectors using purely Boolean-algebraic techniques,
search algorithm based techniques or techniques
based on the combination of the two. But there are
also several problems related to the SSA fault
model, which become more obvious with the
growth of the size of an IC. The main problem lies
on the fact that the computation process to identify
tests can be extremely resource and time intensive

and, additionally, the stuck-at fault model is not
good at modeling certain failure modes of CMOS,
the dominant IC manufacturing technology at the
present time.

During recent years several other fault
models (e.g. stuck-OPEN and bridging) have
gained popularity but these fault models still cannot
solve the problems with CMOS circuits. As a
solution to these problems, two technologies have
been proposed: Inductive fault analysis (IFA) and,
more recently, inductive contamination analysis
(ICA). These techniques present a closer
relationship between physical defects and fault
models. The analysis of a fault is based on
analyzing the given manufacturing process and
layout of a particular circuit. A completely
different aspect of fault model based testing is
testing for delay faults. An IC with delay faults
operates correctly at sufficiently low speed, but
fails at rated speed. Delay faults can be classified
into gate delay faults (the delay fault is assumed to
be lumped at some gate output) and path delay
faults (the delay fault is the result of accumulation
of small delays as a signal propagates along one or
more paths in a circuit).

All methods mentioned above rely on
voltage measurement during testing; but there are
also techniques which are based on current
measurement. These techniques are commonly
referred as IDDQ test techniques. The technique is
based on measuring the quiescent current and can
detect some of the faults which are not detectable
with other testing techniques (except exhaustive
functional testing). IDDQ testing can be also used
for reliability estimation. The disadvantage of this
technique is the very slow testing process, which
makes testing very expensive.
Test Pattern Generation
Test pattern generation is the process of
determining the stimuli necessary to test a digital
system. The simplest approach for combinational
circuits is exhaustive testing where all possible
input patterns will be applied, which means
applying 2n test patterns (where n is the number of
inputs). Such large number of test patterns means
that exhaustive testing is possible only with small
combinational circuits. As an example, a circuit
with 100 inputs needs already 2100-1030 test
patterns and is therefore practically infeasible. An
alternative for exhaustive testing is pseudorandom
testing, where test patterns are generated in
pseudorandom manner. The cost of this type of test
is considerably reduced but pseudorandom patterns
cannot detect all possible faults and for so called
random pattern-resistant faults we still need some
type of deterministic tests. To overcome those



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 39

problems, several structural test generation
techniques have been developed. In this case we
assume that the elementary components are fault-
free and only their interconnects are affected. This
will reduce the number of test patterns to 2nin the
case of the single stuck-at fault model.

There has been a lot of research in the area
of test pattern generation and the current status is
that test pattern generation for combinational
circuits as well as for sequential circuits without
global feedback is a solved problem and there exist
commercial tools for it. Test pattern generation for
complex sequential circuits remains still an
unsolved problem (due to high complexity
involving multiple time frames and other factors)
and there is some skepticism about the possibility
to have efficient commercial solutions available in
the nearest future.
Test Application
As previously mentioned, hardware testing
involves test pattern generation, discussed above,
and test application. Test application can be
performed either on-line or off-line. The former
denotes a situation where testing is performed
during normal operational mode and the latter
when the circuit is not in normal operation. The
primary interest of this thesis is off-line testing
although some of the results can be applied also for
on-line testing as well. Off-line tests can be
generated either by the system itself or outside the
chip and applied by using Automatic Test
Equipment (ATE). With the emerging of sub-
micron and deep sub-micron technologies, the ATE
approach is becoming increasingly expensive, the
quality of the tests and therefore also the quality of
the device deteriorates, and time to market
becomes unacceptably long. Therefore several
methods have been developed to reduce the
significance of external testers and to reduce the
cost of the testing process, without compromising
on quality. Those methods are known as design for
testability (DFT) techniques. In the following,
different DFT techniques are described.
Design for Testability
Test generation and application can be more
efficient when testability is already considered and
enhanced during the design phase. The aim of such
an enhancement is to improve controllability and
observability with minimal area and performance
overhead. Controllability and observability together
with predictability are the most important factors
that determine the complexity of deriving a test set
for a circuit. Controllability is the ability to
establish a specific signal value at each node in a
circuit by setting values on the circuit’s inputs.
Observability, on the other hand, is the ability to

determine the signal value at any node in a circuit
by controlling the circuit’s inputs and observing its
outputs. DFT techniques, used to improve a
circuit’s controllability and observability, can be
divided into two major categories:
DFT techniques which are specific to one particular
design (adhoc techniques) and cannot be
generalized to cover different types of designs.
Typical examples are test point insertion and
design partitioning techniques. Systematic DFT
techniques are techniques that are reusable and well
defined (can be even standardized).
In the following sections some systematic DFT

techniques are discussed.
Scan-Design
To cope with the problems caused by global

feedback and complex sequential circuits, several
different DFT techniques have been proposed. One
of them is internal scan. The general idea behind
internal scan is to break the feedback paths and to
improve the controllability and observability of the
memory elements by introducing an over-laid shift
register called scan path. Despite the increase in
fault coverage, there are some disadvantages with
using scan techniques:
 Increase in silicon area,
 Larger number of pins needed,
 Increased power consumption,
 Increase in test application time,
 Decreased clock frequency.
There are two different types of scan-based
techniques:
1. Full scan
2. Partial scan
In case of partial scan only a subset of the memory
elements will be included in the scan path. The
main reason for using partial scan is to decrease the
cost and increase the speed of testing. In the case of
complex chips or printed circuit boards (PCB) it is
often useful for the purposes of testing and fault
isolation to isolate one module from the others.
This can be achieved by using boundary scan.
Boundary scan is well defined and standardized
(IEEE 1149.1 standard). Boundary scan targets
manufacturing defects around the boundary of a
device and the interconnects between devices.
These are the regions most likely to be damaged
during board assembly.
Built-InSelf-Test
As discussed earlier, the traditional form of off-line
testing requires the use of ATEs. One of the
problems, while using ATEs, is the growing
disparity between the external bandwidth (ATE
speed) and the internal one (internal frequency of
the circuit under test). And as the importance of
delay faults is increasing with newer technologies,



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 40

and the cost of test pattern generation as well as the
volume of test data keep increasing with circuit
size, alternative solutions are needed. One such
solution is built-in self-test(BIST). The main idea
behind a BIST approach is to eliminate the need for
the external tester by integrating active test
infrastructure onto the chip. A typical BIST
architecture consists of a test pattern generator
(TPG), usually implemented as a linear feedback
shift register (LFSR), a test response analyzer
(TRA), implemented as a multiple input shift
register (MISR), and a BIST control unit (BCU),
all implemented on the chip. This approach allows
applying at-speed tests and eliminates the need for
an external tester. Furthermore, the BIST approach
is also one of the most appropriate techniques for
testing complex SoCs, as every core in the system
can be tested independently from the rest of the
system. Equipping the cores with BIST features is
especially preferable if the modules are not easily
accessible externally, and it helps to protect
intellectual property (IP) as less information about
the core has to be disclosed.

There are two widely used BIST schemes:
test-per-clock and test- per-scan. The test-per-scan
scheme assumes that the design already has
existing scan architecture. During the testing phase
the TPG fills the scan chains which will apply their
contents to the circuit under test (CUT). All scan
outputs are connected to the multiple input
signature register (MISR), which will perform
signature, compaction. There are possibilities to
speed up the test process by using multiple scan
chains or by using a partial scan solution. An
example of such an architecture is Self-Test Using
MISR and Parallel Shift Register Sequence
Generator (STUMPS).

Figure: A typical BIST architecture

The test-per-clock scheme uses special registers
that perform pattern generation and response
evaluation. This approach allows to generate and to
apply a new test pattern in each clock cycle. One of
the first proposed test-per-clock architectures was
the Built-In Logic Block Observer (BILBO),
proposed, which is a register that can operate both

as a test pattern generator and a signature analyzer.
As the BIST approach does not require any
external test equipment it can be used not only for
production test, but also for field and maintenance
test, to diagnose faults in field-replaceable units.
Since the BIST technique is always implemented
on the chip, using the same technology as the CUT,
it scales very well with emerging technologies and
can become one of the most important test
technologies of the future.
Constraint Logic Programming
Most digital systems can be conceptually
interpreted as a set of constraints, which is a
mathematical formalization of relationships that
hold in the system. In the context of test generation,
there are two types of constraints: the system
constraints and the test constraints. The system
constraints describe the relationships between the
system variables, which capture the system
functionality and requirements. The test constraints
describe the relationships between the system
variables in order to generate tests for the system.
Constraint solving can be viewed as a procedure to
find a solution to satisfy the desired test constraints
for a system, if such a solution exists. The easiest
way for constraint solving is to enumerate all the
possible values for the constraints and test if there
exists a solution. Unfortunately enumeration
methods are impractical in most cases. The
problem of enumeration methods is that they only
use the constraints in a passive manner, to test the
result of applying values, rather than using them to
construct values that will lead to a solution. There
are lots of constraints solving strategies that make
use of the types and number of constraints in order
to speed up the solving process.

The backtracking strategy is a basic and
important approach in constraint solving. Most
constraint solvers such as CHIP, SICStus, etc., use
the backtracking strategy as a basic method for
constraint satisfaction. The search for a solution
always involves a decision process. Whenever
there are alternatives to solve a problem, one of
them is chosen. If the selected decision leads to an
inconsistency, backtracking is used in order to
allow a systematic exploration of the complete
space of possible solutions and recovery from the
incorrect decision. Recovery involves restoring the
state of the computation to the state existing before
the incorrect decision. For example, there are two
possible solutions for the problem in Figure. We
first choose one of them, D1, as a decision and try
it. In this case, D11 and D12 are alternative
decisions for finding a solution with decision D1.
We can select either D11 or D12 to try to find a
solution. If decision D11 leads to an inconsistency,



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 41

it means that the decision {D1,D11} cannot find a
solution for the given problem. So the system will
recover from D11 and try another alternative
decision, D12. If the decision D12 also fails, it will
cause the first decision D1 to fail. The system
cannot find a solution with the selected decision D1.
So we will go back to try another decision, D2, by
backtracking. As shown in Figure, the selected
decision D21 succeeds. It will lead to a solution for
the given problem and the decision {D2,D21} is a
correct decision for the problem. It is obvious that
the ordering of the variables has an impact on the
searching time.
Problem

Figure: The backtracking strategy

Depending on the complexity of the problem, the
search space, while using the previous search
strategy, can become huge, and finding a solution
is practically infeasible. Therefore, several
heuristics have been developed that explore only
part of the search space. Such is, for example, a
search strategy which only spends a certain number
of search cycles (credits) in each branch. If this
credit is exhausted it goes back in the tree and
chooses an alternative sub- tree high-up in the
(unexplored) tree to further explore. By controlling
the amount of credit which is provided, we can
control the search quite well. However, this
approach may not be able to find the (best) solution,
as it explores the search space only partially.

3. PROPOSED SYSTEM ARCHITECURE
A 4 bit ALU has been designed to perform various
arithmetic and logical operations on 4 bit data. The
ALU has three selection bits (S0S1S0), one carry
input bit (Cin), two 4-bit data(A and B) and an
active low reset as input pins and it has four bit
storage (F) and one bit storage (Cout) as output
pins. The table given below describes the various
operations performed by processor and its pseudo.
Table 1: Operations performed by ALU

The processor instructions can be broadly divided
into two classes. Arithmetic operation and Logical
operation. At the end of execution of each
instruction memory write operation is performed to
store the result back to the address specified bythe
instruction decoder.
As shown in adjoining figure, the LHS of RTL
(Register Transfer Level) Schematic of Arithmetic
and Logical unit has various inputs like two 4 bits
‘a’ & ‘b’ signals, 3 bits operation selection signal,
carry input from previous execution if multiple
fetch and execute cycles are required, etc. On the
other hand the 4 bit result is available along with
OVERFLOW flag.

Figure: Pin diagram of 4 bit ALU

DESIGN OF 16X4 RAM



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 42

The RAM is required to store various data
helpful for instruction execution purpose. It also
contains the intermediate result for multiple fetch
and executes operations. Term 16x4 corresponds
that the memory module is 4-bit wide and 16-
bitdeep. Therefore the 16x4 RAM stores maximum
of 8 byte data.

We had used two dimensional array
declaration to define memory blocks. The
declaration by this fashion also helps in synthesis
as Technology schematic will represents the four,
16x1 memory blocks. Whenever Data out is not
used i.e., when memory is in write mode or if chip
select is high, the Data out is set to “ZZZZ”
(meaning nothing is driven onto bus).

Figure: Pin diagram of 4 bit RAM

DESIGN OF INSTRUCTION DECODER
The instruction decoder can be thought of as a
finite state machine which changes its state from
the present state to next state on the rising edge of
the clock signal. The instruction decoder module
takes input compromising of a three bit opcode and
two 4-bit operands. When asynchronous reset is
high the decoder unit goes to init state. With the
positive edge of every subsequent clock the unit
cycles between Fetch, Execute and Load state. At
each of these states the operations to be performed
are as given below:
Fetch – Fetches data from the location specified by
the first operand. The first operand specifies the
reference by memory allocation. This data is store
in operand a Input.
Execute – Execute the Instruction using ALU after
setting all control lines depending on instruction.
Select Input lines are set to the value of opcode, a
Input is same as obtained in the Fetch state and b
Input is an immediate data supplied to the
instruction.
Load – After completion of ALU operation, result
is contained in 4-bit storage (F) which is stored
back into the location specified by first operand.

International Conference for Convergence of
Technology – 2014.

Figure: FSM design for instruction decoder

The figure depicts the RTL (Register Transfer
Level) Schematic Pin-Diagram of Instruction
Decoder, the LHS pins are Input ports to the
instruction decoder. The operand 1 is reference by
address value of memory, whereas the operand 2is
reference by immediate value. The opcode is 3 bit
long so that all the ALU operations can be enclosed.
On the other hand on output side, a Input, bInput&
select are provided to ALU, rest all are given to
16x4 RAM.

Figure: Pin diagram of Instruction Decoder

RESULTS

Figure: Simulation Result of RAM



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 43

Figure: Architecture of LFSR1 (generate Read
Address)

Figure: Simulation Result of LFSR1

Figure: Architecture of LFSR2 (generate Write
Address)

Figure: Simulation Result of LFSR2

CONCLUSION
We have designed and verified the functionality of
basic four bit microprocessor using structural
modeling which combines three elementary
modules i.e. four bit ALU,16x4 RAM and
Instruction Decoder. The processor design that we
carried out is very basic but for understanding and
developing design of new age complex processor
architectures like multi-core design, the knowledge
of basic design is inevitable. As a part of future
enhancement to the architecture, various addition
are possible like dual-core processor design, to
include more variety of operations to be carried out
by ALU, different assortment of DSP (Digital
Signal Processing) functions like convolution, time

shifting, Fast Fourier transform operations can be
added. We can also include serial interface block so
that RS232 port can be attached to processor.

REFERENCES
[1] N. Kavvadias, P. Neofotistos, S. Nikolaidis, C.
A. Kosmatopoulos, and T. Laopoulos,
“Measurements analysis of the software-related
powerconsumption in microprocessors,” IEEE
Trans. Instrum. Meas., vol. 53,no. 4, pp. 1106–
1112, Aug. 2004.
[2] J. Teifel and R. Manohar, “An Asynchronous
Dataflow FPGA Architecture,” IEEE Transactions
on Computers, vol. 53, no. 11, pp.1376–1392, 2004.
[3] Balpande, R.S. and Keote, R.S., "Design of
FPGA based Instruction Fetch & Decode Module
of 32-bit RISC (MIPS) Processor," in Proc.of
International Conference on Communication
Systems and Network Technologies, pp. 409-413,
2011.
[4] Joaquín Olivares, et all, “Teaching
Microprocessor Design Using FPGAs”, IEEE
EDUCON Education Engineering 2010, April
2009,Spain.
[5] Xilinx® Inc., PicoBlaze 8-bit Embedded
Microcontroller User Guide, Xilinx® 2005
[6] Wang Min, The Principle of Computer
Organization, Electronics Industry Publishing
House, Beijing, 2003
[7] Kilts, Steve, “Advanced FPGA Design.”, John
Wiley & Sons, 2007.
[8] M. Morris Mano, “Digital Logic & Computer
Design,” Pearson Edition, 1979
[9] Samir Palnitkar, “Verilog HDL A guide to
Digital Design and Synthesis,” SunSoft Press, 2003
[10] Rajeev Madhavan, “Quick Reference for
Verilog HDL,” Ambit DesignSystem, 2001
[11] Eli Sternheim, Rajvir Singh, Rajeev
Madhavan, YatinTrivedi, “Digital Design and
Synthesis with Verilog HDL”. Automata PubCo;
1993.


	2. DIGITAL SYSTEM TESTING 
	Digital Systems Testing
	Constraint Logic Programming
	REFERENCES

