
ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 49

Reducing the Hardware Complexity of a Parallel Prefix Adder
K.SIVAKUMAR1, G.LAKSHMI BHARATH2, B.UMAKANTH3

1PG Student, Dept of ECE, SITS, Kadapa, AP, India.
2Assistant Professor, Dept of ECE, SITS, Kadapa, AP, India.

3Assistant Professor, Dept of ECE, SV College of Engineering, AP, India.

Abstract— Currently, parallel prefix adders (PPA)
are considered effective combinational circuits for
performing the binary addition of two multi-bit
numbers. These adders are widely used in
arithmetic-logic units, which are parts of modern
processors, such as microprocessors, digital signal
processors, etc. This paper deals with Kogge-Stone
adder, which is one of the fastest PPA. When
performing the schematic implementation, this
adder has a large hardware complexity. Therefore,
in this work for reducing its hardware complexity
the scheme of modified PPA has been developed.
The performance parameters considered for the
comparative analysis of the presented adders are:
the number of logic gates, Quine-complexity and
maximum delay obtained when schematic
modeling in CAD environment Quartus II based on
FPGA Altera EP2C15AF484C6. As a result, when
simulation of 32-bit adder, Kogge-Stone adder and
modified PPA have similar maximum delay.
However modified PPA has reduced hardware
complexity by 22.5% compared to Kogge-Stone
adder.

1. INTRODUCTION
Basically there are two types of adders,

Serial adders(which performs addition bit by bit
and if speed is not the constraint, a cost effective
option is to use serial adders). Another type which
is parallel adders performs operation parallel that is
adding bits simultaneously. The basic adders like
Ripple carry adders, in which full adders are
connected serially, due to which carry propagation
forms the longest path leading to large delay and
Carry Lookahead adders in which delay is less than
that of ripple carry adders as carry is generated
Before hand, but they consumes a lot of area as
circuit sharing is not there. The performance of
adder and thus overall circuit is very important for
the design as technology keeps on advancing. So,
by changing the carry generation structure of carry
Lookahead adder by parallel prefix trees we can
improve the performance. In this paper Kogge-
Stone adder is investigated, which is one of the
known effective fastest PPA. Kogge-Stone is
widely and efficiently used. Such an adder has
minimum delay while performing the binary
addition. However, for estimation of hardware

costs this adder has a great number of logic gates
and Quine-complexity used in the schematic
implementation. Therefore, in the present work for
reducing its hardware complexity a modified
parallel prefix adder is developed. Then, the
comparison of the two presented adders is made by
the following parameters: the number of logic gates,
Quinecomplexity, as well as the delay obtained by
simulation in Quartus II CAD environment based
on FPGA Altera EP2C15AF484C6. Perspective
architecture is proposed for schematic
implementation of various PPA. And derivation of
the formulas is also described for computing the
hardware characteristics which are dependent on
the bit width of input operands of the presented
adders.

2. EXISTING SYSTEM
Carry Save Adder
A carry save adder is so called because the carry
is saved at the individual stages and latter
computed in the end. In fact the result from
each addition issplit into two parts i.e half-sum
bit and a carry bit. The half sum bits and carry
bit are not combined until very end. In the
end a ripple carry adder is used totake care of
all the carry bits. Carry save adders are
commonly used for high speed and less delay,
where they generally are able to operate faster
than "ripple carry" adders because a carry save
adder does not completely perform the relatively
time-exhaustive process of combining carries
with sum bits between successive additions in the
multiplication process but instead defer it until
the final cycle of the operation. The whole
motivation lies in the fact that the carry is
delayed until the very end and the signals don’t
have to move farther. This helps in a smaller
delay in comparison to ripple carry adder. n-bit
carry save adder can be implemented by using n
full adders by using the following
Techniques:
1. Use a ripple carry adder.
2. Add 0 at the beginning (MSB) of the sum
array after first stage.
3. Shift the carry array left by one bit.
We have utilized the ripple carry adder designed
in the previous chapter to design carry save



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 50

adder. Note, that there are three inputs to the
carry save adder. This is the reason for area and
delay to be in comparison with ripple carry adder.
Refer to block diagram in Fig.1. The idea can
be scaled to n-bit.

Figure 1: 4-bit Carry Save Adder
The test-bench used are same for all the
adders in the library. Care must be taken to
incorporate right data types when using more
than 128 bit adders. Statistics for 8, 16, 32 and
64 bits are shown in the table below.

Table 1: Statistics: Carry Save Adder

3. PROPOSED DESIGN
Parallel Prefix Adders
Parallel prefix adders are most important because
of the speed at which they operate. The sum of
n-bit number can be computed in time O(log n).
This reduction in time is achieved due to its use
of a tree network known as prefix operation
graph. The reduction in time helps in addition
of wider word lengths. A block diagram for
parallel prefix adder is shown in 2. Every
parallel prefix adder can be designed using
three stages as described in the figure 6.1. The
first stage is simple half adder. The core of the
parallel prefix adder is the prefix graph that
propagates the carry to the final stages. An
example of the graph is show in Fig. 6.2. In the

prefix operation graph, each node is a basic
logical circuit described as prefix operation.
The goal of addition is to compute the sum,
S, of two operands A and B,both of which are
binary words of length n. For n-bit addition, the
first stage of the adder computes the generate (G)
and propagate (P) terms for each bit of the
operands according to the following equations:
Gi = Ai AND BiPi = Ai XOR Bi
Stage 2 consists of the basic prefix operation,
pref, is defined as follows:

Figure 2: Parallel Prefix Block Diagram

(Gi,Pi) pref (Gj,Pj) = (Gi + Pi . Gj , Pi.Pj)
In the above equation, + refers to logical OR
and . refers to logical AND.

In the end, the carry is equal to Gi’s and sum
is calculated by XOR with initial propagate
which is the final stage.
We have designed two parallel prefix adders:
1. Kogge-Stone Adder
2. Han-Carlson Adder
P.M. Kogge and H.S. Stone were he first to use
the property of commutativityand design parallel
prefix adders where the computation of the
prefixes is considered to be a recurrence that can
be performed in parallel. The Kogge-Stone
computation uses log2n stages, where n is the
number of bits in the operands. Han-Carlson
adder is a hybrid of Kogge-Stone and another
parallel prefix adder i.e Brent-Kung. Kogge-
Stone takes log2n stages and the Brent-Kung
construction takes 2log2n-1 stages. Han-Carlson
adder takes less area for the combinational
circuits as compared to Kogge-Stone design.
Each prefix tree consist of the some basic
building blocks such as prefix_op (Bigger
Circle), Square Box, Buffer and Diamond (Last
stage XOR). Prefix tree graph for 16-bit Kogge
stone is shown in Fig.3 .



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 51

Figure 3: 16-bit Kogge Stone Prefix Graph
ABCResults: First Stage SquareOperation
Gates = 3 Cap = 0.9 ff Area = 0.69 Delay = 4.70
ps

Figure 4: 16-bit Han Carlson Prefix Graph

Table 2: ABC Results: Carry Save Adder

Table 3: Statistics: Kogge Stone Adder

Table 4: Statistics: Han Carlson Adder

4. RESULTS
Results of all the modules are tabulated below
along with the bits, delay and number of cells
for each.
Table 5: Results: Adders

Table 6: Results



ISSN: 2057-5688

Volume XIV, Issue IV, 2022 November http://ijte.uk/ 52

CONCLUSION
A base has been created by creating this library
where the modules can be used as per the
required number of bits. An engineer would
not need to create this modules redundantly
and can be directly instantiated while
designing complex modules. Current modules
include Binary Adders, Parallel Prefix Adder,
Shifters and Radix-4 Booth Multiplier. All the
modules are designed successfully and are
synthesizable. Extensive synthesis results are
attached and also available at the repository. In
future, we can continue to grow our library as
per required by adding more modules to it.

References
1) R. P. Brent and H. T. Kung. A regular layout
for parallel adders. IEEE Trans. Comput.,
31(3):260–264, March 1982.
2) Leininger Joel Calvin and Taylor George
Phillips. Carry save adder.
3) T. Han and D. A. Carlson. Fast area-efficient
vlsi adders. In 1987 IEEE 8th Symposium on
Computer Arithmetic (ARITH), pages 49–56,
May 1987.
4) P. M. Kogge and H. S. Stone. A parallel
algorithm for the efficient solution of a general
class of recurrence equations. IEEE Transactions
on Computers, C-22(8):786–793, Aug 1973.
5) M. Morris Mano. Digital Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 3rd
edition, 2001.
6) S. Muthyala Sudhakar, K. P. Chidambaram,

and E. E. Swartzlander. Hybrid han-carlson
adder. In 2012 IEEE 55th International Midwest
Symposium on Circuits and Systems
(MWSCAS), pages 818–821, Aug 2012.
7) Neil Weste and David Harris. CMOS VLSI
Design: A Circuits and Systems Perspective.
Addison-Wesley Publishing Company, USA, 4th
edition, 2010.


	2. EXISTING SYSTEM
	3. PROPOSED DESIGN
	CONCLUSION
	References 

