.

o, i

F

IJTE

4 TECHNO-ENGINEERING

ISSN: 2057-5688

Reducing the Hardware Complexity of a Parallel Prefix Adder

K.SIVAKUMAR!, G.LAKSHMI BHARATH?, B.UMAKANTH?
'PG Student, Dept of ECE, SITS, Kadapa, AP, India.
2Assistant Professor, Dept of ECE, SITS, Kadapa, AP, India.
3Assistant Professor, Dept of ECE, SV College of Engineering, AP, India.

Abstract— Currently, parallel prefix adders (PPA)
are considered effective combinational circuits for
performing the binary addition of two multi-bit
numbers. These adders are widely used in
arithmetic-logic units, which are parts of modern
processors, such as microprocessors, digital signal
processors, etc. This paper deals with Kogge-Stone
adder, which is one of the fastest PPA. When
performing the schematic implementation, this
adder has a large hardware complexity. Therefore,
in this work for reducing its hardware complexity
the scheme of modified PPA has been developed.
The performance parameters considered for the
comparative analysis of the presented adders are:
the number of logic gates, Quine-complexity and
maximum delay obtained when schematic
modeling in CAD environment Quartus 11 based on
FPGA Altera EP2C15AF484C6. As a result, when
simulation of 32-bit adder, Kogge-Stone adder and
modified PPA have similar maximum delay.
However modified PPA has reduced hardware
complexity by 22.5% compared to Kogge-Stone
adder.

1. INTRODUCTION

Basically there are two types of adders,
Serial adders(which performs addition bit by bit
and if speed is not the constraint, a cost effective
option is to use serial adders). Another type which
is parallel adders performs operation parallel that is
adding bits simultaneously. The basic adders like
Ripple carry adders, in which full adders are
connected serially, due to which carry propagation
forms the longest path leading to large delay and
Carry Lookahead adders in which delay is less than
that of ripple carry adders as carry is generated
Before hand, but they consumes a lot of area as
circuit sharing is not there. The performance of
adder and thus overall circuit is very important for
the design as technology keeps on advancing. So,
by changing the carry generation structure of carry
Lookahead adder by parallel prefix trees we can
improve the performance. In this paper Kogge-
Stone adder is investigated, which is one of the
known effective fastest PPA. Kogge-Stone is
widely and efficiently used. Such an adder has
minimum delay while performing the binary
addition. However, for estimation of hardware

Volume X1V, Issue 1V, 2022

November

costs this adder has a great number of logic gates
and Quine-complexity used in the schematic
implementation. Therefore, in the present work for
reducing its hardware complexity a modified
parallel prefix adder is developed. Then, the
comparison of the two presented adders is made by
the following parameters: the number of logic gates,
Quinecomplexity, as well as the delay obtained by
simulation in Quartus II CAD environment based
on FPGA Altera EP2C15AF484C6. Perspective
architecture is proposed for schematic
implementation of various PPA. And derivation of
the formulas is also described for computing the
hardware characteristics which are dependent on
the bit width of input operands of the presented
adders.

2. EXISTING SYSTEM

Carry Save Adder

A carry save adder is so called because the carry
is saved at the individual stages and latter
computed in the end. In fact the result from
each addition issplit into two parts i.e half-sum
bit and a carry bit. The half sum bits and carry
bit are not combined until very end. In the
end a ripple carry adder is used totake care of
all the carry bits. Carry save adders are
commonly used for high speed and less delay,
where they generally are able to operate faster
than "ripple carry" adders because a carry save
adder does not completely perform the relatively
time-exhaustive process of combining carries
with sum bits between successive additions in the
multiplication process but instead defer it until
the final cycle of the operation. The whole
motivation lies in the fact that the carry is
delayed until the very end and the signals don’t
have to move farther. This helps in a smaller
delay in comparison to ripple carry adder. n-bit
carry save adder can be implemented by using n
full adders by using the following

Techniques:

1. Use a ripple carry adder.

2. Add 0 at the beginning (MSB) of the sum
array after first stage.

3. Shift the carry array left by one bit.

We have utilized the ripple carry adder designed
in the previous chapter to design carry save

http://ijte.uk/ 49

. ,

" TECHNO-ENGINE
IJTE

adder. Note, that there are three inputs to the
carry save adder. This is the reason for area and

delay to be in comparison with ripple carry adder.

Refer to block diagram in Fig.1. The idea can
be scaled to n-bit.

C3 B3 A3 C2 B2 A2 CiBl A1 Co B0 AD

T]

Za |
2 |
& |

i ‘ 4 - tit Rigple Canry Adder \

l S0
b v v

Figure 1: 4-bit Carry Save Adder

The test-bench used are same for all the
adders in the library. Care must be taken to
incorporate right data types when using more
than 128 bit adders. Statistics for 8, 16, 32 and
64 bits are shown in the table below.

Table 1: Statistics: Carry Save Adder

[Statistics: Carry Save Adder

8-bits Lﬁ-bims B2-bits (64-bits
Delay (ps) 61.22 86.66 127.05 R48.21

IAND2_X1 12 29 61

IAND3_X2 il 0 0

AOI21_X1 21 1o o8

INV_X1

3
0
5

IAOI21_X2 0 0 15
i B7 78 155
o

INV_X2 0 2 5

NAND2_X1 24 18 50 82

JOR2 X1 18 57 119 R47

NOR3_X1 it 6 6

OAI21_X1 3 B9 71

OR2_X1

0
0

XNOR2 X1 0 il 0 0
0 0 B B
2.

XOR2 X1 2 B4 58 122

Jumber of cells 81 190 448 880

3. PROPOSED DESIGN

Parallel Prefix Adders

Parallel prefix adders are most important because
of the speed at which they operate. The sum of
n-bit number can be computed in time O(log n).
This reduction in time is achieved due to its use
of a tree network known as prefix operation
graph. The reduction in time helps in addition
of wider word lengths. A block diagram for
parallel prefix adder is shown in 2. Every
parallel prefix adder can be designed using
three stages as describedin the figure 6.1. The
first stage is simple half adder. The core of the
parallel prefix adder is the prefix graph that
propagates the carry to the final stages. An
example of the graph is show in Fig. 6.2. In the

Volume X1V, Issue IV, 2022

ERING

November

ISSN: 2057-5688

prefix operation graph, each node is a basic
logical circuit described as prefix operation.
The goal of addition is to compute the sum,
S, of two operands A and B,both of which are
binary words of length n. For n-bit addition, the
first stage of the adder computes the generate (G)
and propagate (P) terms for each bit of the
operands according to the following equations:
Gi= Ai AND BiPi = Ai XOR Bi
Stage 2 consists of the basic prefix operation,
ref, is defined as follows:

Initial Stage
(Consists Half Adders)

Calculate the Propogate and Generate Signals

¥

Carry Generation Block
(Prefix Operation Graph)

Parallel Propagation of Carry

Final Stage
{(XOR Operation)

4
Sum

Figure 2: Parallel Prefix Block Diagram

(Gi,Pi) pref (Gj,Pj) = (Gi + Pi. Gj, Pi.Pj)
In the above equation, + refers to logical OR
and . refers to logical AND.

In the end, the carry is equal to Gi’s and sum
is calculated by XOR with initial propagate
which is the final stage.

We have designed two parallel prefix adders:

1. Kogge-Stone Adder

2. Han-Carlson Adder

P.M. Kogge and H.S. Stone were he first to use
the property of commutativityand design parallel
prefix adders where the computation of the
prefixes is considered to be a recurrence that can
be performed in parallel. The Kogge-Stone
computation uses log2n stages, where n is the
number of bits in the operands. Han-Carlson
adder is a hybrid of Kogge-Stone and another
parallel prefix adder i.e Brent-Kung. Kogge-
Stone takes log2n stages and the Brent-Kung
construction takes 2log2n-1 stages. Han-Carlson
adder takes less area for the combinational
circuits as compared to Kogge-Stone design.
Each prefix tree consist of the some basic
building blocks such as prefix op (Bigger
Circle), Square Box, Buffer and Diamond (Last
stage XOR). Prefix tree graph for 16-bit Kogge
stone is shown in Fig.3.

http://ijte.uk/ 50

*ﬁ BTESMATI J A J LIR N A L 1 ¥
e TECHNO-ENGINEERING
IJTE

ISSN: 2057-5688

Inputs 15 00 [Statistics: Kogge Stone Adder
n Biock 1 ot ﬁ-bit Ba-oi Ao
: Delay (ps) 31.97 [39.49 [48.07 [57.01
- umber of wires iz 16 15 20
Block 2
Number of wire bits 98 226 514 1154
s Vs of public |14 16 15 20
Number of public wirebits 98 26 514 1154
Block 4
1 Sumber of memories g 0 0
i i Cumber of _memory o 0 0
] i i [1 1 its
T i] i 1 1+ 1 1 Block5
1 1 ' 1 1 1 ' 1 Number of processes 0 0 0
1] L] 1} ' L} 1 Ll 1] 1 1l 1 1] L} 1
Lok e i Sanber of cells 57 02 219 506
i] [} i 1 1 1]] 1] 1]] 1] [} 1
L vk LI CON OB U - A Buffer 7 ig B1 63
Gi = Ai & Bi s G=Gi | [PI & GIJ‘] [Diamond . 8 16 B2 64
1Fl PPref_Operation 14 5 124 B15
Pi = Ai 7 Bi Gi-1.Pi1 P=Fi&Pi-1 Sauars_Operation s 16 52 &
Figure 3: 16-bit Kogge Stone Prefix Graph Table 4: Statistics: Han Carlson Adder
. . [Statistics: Han Carlson Adder
ABC Results: First Stage Square Operation - —
Gates=3 Cap=0.9 ff Area=0.69 Delay =4.70 b o X3
ps fumber of wires 18 R0
Inputs 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 umber of wire bits B8 578
n n n n n n n , Block 1 uniber of public [18 20
' [I " " [ires
l 1 i i i I/k
: . : . : : Block 2 umber of public wirebits 258 578
L]
I
: Block 3 umber of memories 0
! umber o memory o
i bits
1]
| Block4 umber of processes o
: umber of cells 107 250
\ Buffer 7 T
: Block 5 [Diamond 16 B2
| i 1 Pref_Operation 28 75
1 |
! ! ! [Square_Operation 16 2
: H @ Bocs
' 1]
) H |
4. RESULTS
A —--Gizmaai GiPi — @=BIHFEGE) Results of all the modules are tabulated below
TR "o (TENEN R P, P =Pi & Pi-1 along with the bits, delay and number of cells
Figure 4: 16-bit Han Carlson Prefix Graph for each.
Table 5: Results: Adders
Table 2: ABC Results: Carry Save Adder Results: Adders
ABC Results: Building Blocks for Prefix Adder Delay@s) Nomber of Cells
Diamond Prefix Operation Square Opera- = =
tion Ripple Carry Adder 8-bit 48.59 40
Delay (ps) 428 3 4 16-bit 86.82 76
AND2ERL el 0 2 0 32-bit 12021 150
|IAND2_X1 cells: 0 1 1 -
BUF X2 cells: 7 i T 64-bit 24048 204
INV_X1 cells: 0 1 0 Carry Save Adder 8-bit 61.22 81
[KOR2_XI cells: 1 0 0 3 Jiigits
OR2_X1 cells: 0 0 2} -
aternal signals 0 I 0 16-bit 86.66 190
finput signals: 2 3 2 32-bit 127.05 448
output signals: 1 2 2 64-bit 24821 380
Kogge-Stone Adder 8-bit 31.97 59
Table 3: Statistics: Kogge Stone Adder 16-bit 39.49 168
32-bit 18.07 454
64-bit 57.01 1100
Han-Carlson Adder 16-bit 77.28 96
32-bit 62.67 286

Table 6: Results

Volume X1V, Issue 1V, 2022 November http://ijte.uk/ 51

o, i
F 4

TECHNO-ENGINEERING

IJTE
Results
Delay(ps) Number of Cells
Bit-Shift Left 8-bit 3246 89
16-bit 45.39 310
32-bit 58.38 1259
64-bit 67.98 4739
Bit-Shift Right 8-bit 3375 89
16-bit 50.90 358
32-bit 59.06 1308
64-bit 72.56 4935
Bit-Shift Rotate Left 8-bit 3215 135
16-bit 42.94 572
32-bit 57.19 2354
64-bit 64.64 9214
Bit-Shift Rotate Right | 8-bit 32.15 135
16-bit 42.94 572
32-bit 57.19 2354
64-bit 64.64 9214
Radix-4 Booth Multi-| 8-bit 118.16 665
plisr
16-bit 258.49 2624
32-bit 561.12 11093
64-bit 1171.70 45050
CONCLUSION

A base has been created by creating this library
where the modules can be used as per the
required number of bits. An engineer would
not need to create this modules redundantly
and can be directly instantiated while
designing complex modules. Current modules
include Binary Adders, Parallel Prefix Adder,
Shifters and Radix-4 Booth Multiplier. All the
modules are designed successfully and are
synthesizable. Extensive synthesis results are
attached and also available at the repository. In
future, we can continue to grow our library as
per required by adding more modules to it.

References

1) R. P. Brent and H. T. Kung. A regular layout
for parallel adders. IEEE Trans. Comput.,
31(3):260-264, March 1982.

2) Leininger Joel Calvin and Taylor George
Phillips. Carry save adder.

3) T. Han and D. A. Carlson. Fast area-efficient
vlsi adders. In 1987 IEEE 8th Symposium on
Computer Arithmetic (ARITH), pages 49-56,
May 1987.

4) P. M. Kogge and H. S. Stone. A parallel
algorithm for the efficient solutionof a general
class of recurrence equations. IEEE Transactions
on Computers, C-22(8):786—793, Aug 1973.

5) M. Morris Mano. Digital Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 3rd
edition, 2001.

6) S. Muthyala Sudhakar, K. P. Chidambaram,

Volume X1V, Issue IV, 2022

November

ISSN: 2057-5688

and E. E. Swartzlander. Hybrid han-carlson
adder. In 2012 IEEE 55th International Midwest
Symposium on Circuits and Systems
(MWSCAS), pages 818-821, Aug 2012.

7) Neil Weste and David Harris. CMOS VLSI
Design: A Circuits and Systems Perspective.
Addison-Wesley Publishing Company, USA, 4th
edition, 2010.

http://ijte.uk/ 52

	2. EXISTING SYSTEM
	3. PROPOSED DESIGN
	CONCLUSION
	References

