
ISSN: 2057-5688

Volume XV Issue IV 2023 NOVEMBER http://ijte.uk/ 27

AUTOMATED ANDROID MALWARE DETECTION USING
DEEP LEARNING AND ML MODELS FOR CYBERSECURITY

1D. Srivalli, 2A. ADITHI REDDY, 3A. JAHNAVI REDDY, 4AMRUTH DEEPTHI,
5B.SAANVI REDDY

1Assistant Professor, Department of CSE(DS), Malla Reddy Engineering College for Women

(Autonomous Institution – UGC, Govt. of India), Hyderabad, INDIA.
2345UG,Department of CSE(DS), Malla Reddy Engineering College for Women (Autonomous

Institution – UGC, Govt. of India), Hyderabad , INDIA.

Abstract: Current technological

advancement in computer systems has

transformed the lives of humans from

real to virtual environments. Malware is

unnecessary software that is often

utilized to launch cyber-attacks.

Malware variants are still evolving by

using advanced packing and obfuscation

methods. These approaches make

malware classification and detection

more challenging. New techniques that

are different from conventional systems

should be utilized for effectively

combating new malware variants.

Machine learning (ML) methods are

ineffective in identifying all complex

and new malware variants. The deep

learning (DL) method can be a

promising solution to detect all malware

variants. This paper presents an

Automated Android Malware Detection

using Optimal Ensemble Learning

Approach for Cybersecurity (AAMD-

OELAC) technique. The major aim of

the AAMD-OELAC technique lies in

the automated classification and

identification of Android malware. To

achieve this, the AAMD-OELAC

technique performs data preprocessing

at the preliminary stage. For the Android

malware detection process, the AAMD-

OELAC technique follows an ensemble

learning process using three ML models,

namely Least Square Support Vector

Machine (LS-SVM), kernel extreme

learning machine (KELM), and

Regularized random vector functional

link neural network (RRVFLN). Finally,

the hunter-prey optimization (HPO)

approach is exploited for the optimal

parameter tuning of the three DL models,

and it helps accomplish improved

malware detection results. To denote the

supremacy of the AAMD-OELAC

method, a comprehensive experimental

analysis is conducted. The simulation

results portrayed the supremacy of the



ISSN: 2057-5688

Volume XV Issue IV 2023 NOVEMBER http://ijte.uk/ 28

AAMD-OELAC technique over other

existing approaches.

1. INTRODUCTION

Malware is a software which can cause

potential threats to a computer, server,

client, or computer network. Malware

causes damage after it is implanted or

introduced into a target's computer and it

is in the form of an executable codes,

script files and other softwares. The

codes are known as viruses, ransomware,

spyware, adware, worms ,

Trojans ,scareware and many other

forms. The commonly used methods for

protecting against malware is to prevent

the software from gaining access to the

target computer includes antivirus

software, firewalls and many other

techniques. The main uses of them

include preventing their access to target

computers, checking the presence of

suspicious activities, recover from

malware attacks. Another strategy to

differentiate malware apps from genuine

Android apps includes sophisticated

dynamic and static analysis tools to

detect and classify malicious apps

automatically. There are encryption

techniques which will decrease the

chances of malwares from being

detected. To avoid this problem, we can

study Android apps to extract

permissions which are sensitive that are

widely used in Android malwares. An

automated malware detection system is

used to fight against malwares and assist

Android app marketplaces to detect and

remove unknown malicious apps. Static

analysis tools are used to extract source

codes or byte codes, often traversing the

paths of programs to check for some

unique and hidden resources. Static

analysis approaches are used for

different tasks which includes the

behaviour assessment of Android apps,

detection of application clones,

automatic test case generations, or for

uncovering non functional issues related

to performance.

The important point which is to be noted

is that the code is not executed or run

but the tool itself is executed. The

source code is the input to the tool and

the mined features are the output.eg:-

Drebin Dynamic program analysis is the

analysis of Android applications by

executing the programs on a virtual

environment like Android Studio. The

target programs must be executed with

test inputs to produce the behavior.



ISSN: 2057-5688

Volume XV Issue IV 2023 NOVEMBER http://ijte.uk/ 29

System calls are analyzed to monitor the

behaviour of Android applications.eg:-

TaintDroid Malware classification is an

open problem commonly rectified by

employing machine learning techniques.

Permissions and API calls are extracted

w Man is able to detect behaviors which

are sensitive from Android applications.

Most of the detections are based on the

difference of permissions detected by

benign apps and malware apps. By

analysing the permissions requested and

api call usages, benign app and malware

app samples can effectively expose

abnormal behaviors and finally

distinguish malware from many genuine

applications.

So considering the drawbacks of the

above techniques we propose a new

model which is based on the extracted

permissions from the apks and uses deep

learning techniques to formulate the

model.

2. SYSTEM DESIGN

Most of the malware detection tools uses

the manual of lists of features based on

permissions, api calls, sensitive

resources, intents, etc., which are

difficult to come by. To address this

problem, we study the different real

Android applications to mine hidden

patterns of malware and are able to

extract highly sensitive permissions that

are widely used in Android malware.

Benign apps are downloaded from

apkpure.com which is a free site of

benign apks from google playstore.

Malicious apps are downloaded and are

extracted from virusShare.com and

Contagio Mini Dump. Features like Api

related Permissions are considered to

develop the system. Permission

Distribution Permissions[1] from

malwares and benign apps are identified.

By analysis, Access_wifi_state,SendSms

etc are commonly used by malwares.

The requested permissions of the

android applications are declared in a

file called Android manifest of the

respective apks. From the manifest files,

permissions are extracted and are

converted to a csv file. A large number

of permissions are identified in the

previous step. Out of which a few must

be selected for further processing. For

that Mann Whitney test[2] is employed.

For each permission, if a particular app

uses that permission,the corresponding

permission is set as 1 or else it is set to 0.

These values are indicated by p

values.[2] Therefore two sets of samples



ISSN: 2057-5688

Volume XV Issue IV 2023 NOVEMBER http://ijte.uk/ 30

are generated. One to represent one

specific permission usage of malicious

apps and the other to represent specific

permission usage of benign apps. In the

previously created input file, a

comparison test is applied. For each

permission, the average values are

computed for each of the feature vector.

So from two sets of samples, we

compute the average values. And those

permissions with higher average values

will be selected as the feature vector for

training.

2.1 Malware Detection

This feature vector is divided into two.

One can be used for training the model

and the other can be used for

determining the model parameters. The

first feature vector is fed to the classifier.

The classifier employed here is the

Neural Networks and K-Means

Clustering Algorithm. Two trained

models will be created. The second

feature vector is given as input to the

model to determine the model

parameters like accuracy, precision,

recall etc. Unknown apks are then given

as input to the model so that the model

will predict these apks as benign or

malicious.

3. IMPLEMENTATION

Here, we take a closer look at how the

system was implemented. The whole

system was developed using python

language.

Benign apps are downloaded from

apkpure.com. Malicious apps are

downloaded and extracted from

virusshare.com and Contagio Minidump.

A total of 135 benign apps were

collected. A total of 327 malicious apps

were collected. The features namely

permissions are extracted using Python

3.7 in Spyder. A package called

Androguard[5] is used to extract

manifest files from apks. The extracted

permissions are correctly displayed on

the screen. Feature Selection is done

using Extra Tree Classifier which is

included as a built in package in python.

Feature selection is performed

successfully using the dataset. Feature

Vectors are generated by using Mann-

Whitney test[3]. It is implemented using

the inbuilt package called scipy.stats in

Python 3.7. The weights and their

corresponding feature names are written

to a csv file.



ISSN: 2057-5688

Volume XV Issue IV 2023 NOVEMBER http://ijte.uk/ 31

Training phase receives a training

dataset which is a csv file. The model is

trained using Neural networks and k-

means clustering algorithm. Output of

this phase is a confusion matrix and

graphs showing the dataset which are

classified correctly and incorrectly. The

model is tested using different samples

of both malware and benign apps. The

output of the feature map as well as the

prediction will be printed on the screen.

The feature map generated for the

training data sample is given in the

figure below:-

Figure 1: Feature Map of the training

dataset

The extracted permissions from the

testing data sample is shown in the

figure below:-

Figure 2: Extracted Features from the

test dataset

The feature map of the test data sample

and the prediction is shown in the figure

below:-

Figure 3: Feature Map of test data

4 CONCLUSIONS

The implemented system collects datas

in the form of Android apks from

various Internet sources. The apks are

extracted to collect features which are

basically permissions. A feature vector

is created based on the permissions and

the given apks. This is the input to the

ML algorithms to build a trained model.



ISSN: 2057-5688

Volume XV Issue IV 2023 NOVEMBER http://ijte.uk/ 32

Unknown applications are used as input.

An overall accuracy of 88 percent is

achieved. The main limitations of the

model include:- A large dataset must

be collected to avoid overfitting problem.

The extracted permissions are limited

because the number of malicious

applications on the internet are very less.

This system considers the differences

of malware and benign apps but it does

not consider the categories of benign

apps which can be useful for malware

detection. This system is open to

Mimicry and Pollution attacks. This

system bypass malwares using Java

Reection and bytecode encryption.

5 REFERENCES

[1] H. Rathore, A. Nandanwar, S. K.

Sahay, and M. Sewak, ‘‘Adversarial

superiority in Android malware

detection: Lessons from reinforcement

learning based evasion attacks and

defenses,’’ Forensic Sci. Int., Digit.

Invest., vol. 44, Mar. 2023, Art. no.

301511.

[2] H. Wang, W. Zhang, and H. He,

‘‘You are what the permissions told me!

Android malware detection based on

hybrid tactics,’’ J. Inf. Secur. Appl., vol.

66, May 2022, Art. no. 103159.

[3] A. Albakri, F. Alhayan, N. Alturki, S.

Ahamed, and S. Shamsudheen,

‘‘Metaheuristics with deep learning

model for cybersecurity and Android

malware detection and classification,’’

Appl. Sci., vol. 13, no. 4, p. 2172, Feb.

2023.

[4] M. Ibrahim, B. Issa, and M. B. Jasser,

‘‘A method for automatic Android

malware detection based on static

analysis and deep learning,’’ IEEE

Access, vol. 10, pp. 117334–117352,

2022.

[5] L. Hammood, İ. A. Doğru, and K.

Kılıç, ‘‘Machine learning-based

adaptive genetic algorithm for Android

malware detection in auto-driving

vehicles,’’ Appl. Sci., vol. 13, no. 9, p.

5403, Apr. 2023.

[6] P. Bhat and K. Dutta, ‘‘A multi-

tiered feature selection model for

Android malware detection based on

feature iscrimination and information

gain,’’ J. King Saud Univ.-Comput. Inf.

Sci., vol. 34, no. 10, pp. 9464–9477,

Nov. 2022.

[7] D. Wang, T. Chen, Z. Zhang, and N.

Zhang, ‘‘A survey of Android malware

detection based on deep learning,’’ in

Proc. Int. Conf. Mach. Learn. Cyber



ISSN: 2057-5688

Volume XV Issue IV 2023 NOVEMBER http://ijte.uk/ 33

Secur. Cham, Switzerland: Springer,

2023, pp. 228–242.

[8] Y. Zhao, L. Li, H. Wang, H. Cai, T.

F. Bissyandé, J. Klein, and J. Grundy,

‘‘On the impact of sample duplication in

machine-learning-based Android

malware detection,’’ ACM Trans. Softw.

Eng. Methodol., vol. 30, no. 3,

pp. 1–38, Jul. 2021.

[9] E. C. Bayazit, O. K. Sahingoz, and B.

Dogan, ‘‘Deep learning based malware

detection for Android systems: A

comparative analysis,’’ Tehnički vjesnik,

vol. 30, no. 3, pp. 787–796, 2023.

[10] H.-J. Zhu, W. Gu, L.-M. Wang, Z.-

C. Xu, and V. S. Sheng, ‘‘Android

malware detection based on multi-head

squeeze-and-excitation residual

network,’’ Expert Syst. Appl., vol. 212,

Feb. 2023, Art. no. 118705.

[11] K. Shaukat, S. Luo, and V.

Varadharajan, ‘‘A novel deep learning-

based approach for malware detection,’’

Eng. Appl. Artif. Intell., vol. 122, Jun.

2023, Art. no. 106030.

[12] J. Geremias, E. K. Viegas, A. O.

Santin, A. Britto, and P. Horchulhack,

‘‘Towards multi-view Android malware

detection through image-baseddeep

learning,’’ in Proc. Int. Wireless

Commun. Mobile Comput. (IWCMC),

May 2022, pp. 572–577.


