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Abstract.One of the most important issues facing public health all around the world is TB,
which is an infection brought on by a bacteria known as Mycobacterium tuberculosis. This
research aims to facilitate and automate the prediction of tuberculosis by the TBCapsNet
architecture using Capsule Networks and demonstrate that it is more accurate than traditional
CNN architectures. The development of tuberculosis screening systems with high accuracy
contributes to the improvement of medical solutions in general, but particularly in rural areas
with limited medical resources.
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1. Introduction

Tuberculosis is a common and serious respiratory infection that can be challenging to
diagnose accurately from chest radiographs, especially in low income countries. The
TBCapsNet model was developed to assist radiologists in the diagnosis of TB by
automatically analysing chest radiographs and providing a prediction of whether or not the
patient has TB. Capsule Networks or CapsNets and Convolutional Neural Networks (CNNs)
are both deep learning models used for image processing tasks[1]. CapsNets, are a type of
neural network architecture that are designed to overcome some of the limitations of
traditional CNNSs. In particular, CapsNets aim to address the issue of "invariance" in CNNs,
which refers to their inability to handle variations in pose, orientation, or deformation of
objects within an image. CapsNet was introduced by Sabour, Frosst, and Hinton in 2017
shown in figure 1[2]. CapsNet is designed to overcome the limitations of traditional neural
networks in object recognition tasks, such as the inability to handle variations in the position,
orientation, and size of objects.In CapsNet, the basic building blocks are called "capsules,"
which are groups of neurons that are responsible for detecting specific features of an object,
such as its orientation, size, and color[3]. Each capsule outputs a vector that represents the
probability of the presence of a specific feature.Capsules are organized into layers, and each
layer consists of several capsules. The output of each capsule in a given layer is passed as
input to all the capsules in the next layer. This allows CapsNet to capture the hierarchical
relationships between features of an object.[4]

CapsNet also includes a mechanism called "dynamic routing," which allows the
network to adjust the weights between capsules based on the agreement between their
predictions[2]. This enables CapsNet to handle variations in object position, orientation, and
size, and to provide more accurate predictions of object attributes.CapsNet is still an active
area of research, and it has shown promising results in tasks such as object recognition, pose
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estimation, and generative modelling. There are some significant differences between the two.
CNNs use convolutional layers to extract features from images, followed by fully connected
layers for classification. In contrast, capsule networks use a novel architecture that consists
of capsule layers, which group together neurons to represent more complex features. One of
the key advantages of capsule networks is their ability to capture spatial relationships
between features, which is important for tasks like object recognition. Capsule networks also
have the ability to handle viewpoint changes and deformation of objects, which can be
challenging for traditional CNNs[5].
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Figure 1 Original Capsule network architecture.

Another advantage of capsule networks is their ability to generate vectors that encode
different attributes of objects, such as size, orientation, and position. This can be useful for
tasks like image captioning, where the network needs to generate natural language
descriptions of images. One potential disadvantage of capsule networks is that they require
more computational resources and training time compared to CNNs[6]. Additionally, capsule
networks are a relatively new architecture, so there are fewer pre-trained models and
resources available compared to CNNs[7].

2. Architecture details of Caps Net

The core idea behind CapsNet is the use of "capsules" instead of traditional neurons.
Capsules are groups of neurons that represent the instantiation parameters of an object, such
as its pose, deformation, and texture. Each capsule outputs a vector that encodes these
parameters, which is then routed to higher-level capsules to form a hierarchy of capsules
representing increasingly complex features. The CapsNet architecture consists of two main
parts, the encoder and the decoder. The encoder is responsible for extracting features from
the input image and encoding them into capsules. The decoder takes the output of the
encoder and reconstructs the input image. The loss between the input image and the
reconstructed image is used to train the network.
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Figure 2 Architecture of caps Network

The architecture of a CapsNet typically consists of several layers of capsules, organized
into two main types: "convolutional capsules" and "capsule layers". The figure 2 shows an
example architecture of a CapsNet with two convolutional capsule layers and two fully
connected capsule layers.Input layer takes in the input image, which is typically a 3-
dimensional tensor representing the RGB channels of the image.Convolutional capsule
layers perform convolutional operations on the input, similar to the way that CNNs work][8].
However, instead of producing scalar outputs like in a traditional CNN, each convolutional
capsule outputs a vector that represents a particular entity or feature in the input.Primary
capsule layer takes the output of the convolutional capsule layers and groups them into
capsules based on their similarity. Each primary capsule represents a particular type of entity
or feature in the input, and its output vector encodes information about the presence and pose
of that entity.Secondary capsule layer takes the output of the primary capsule layer and
computes the "coupling coefficients" between pairs of capsules. The coupling coefficients
indicate how likely it is that two capsules are related to each other, based on their similarity
and other factors. The digit capsules layer is where the Capsule Network identifies the object
in the image. Each capsule in the digit capsules layer represents a possible object in the
image. The capsules in the digit capsules layer are connected to the capsules in the primary
capsules layer. The connection between the capsules in the primary capsules layer and the
digit capsules layer is determined by a weight matrix, which is learned during training.

Output capsule layer uses the coupling coefficients to compute the final output
vectors for each capsule, which represent the probability that a particular entity or feature is
present in the input. The capsule with the highest output probability is taken as the final
output of the network. The architecture of a CapsNet allows it to capture more fine-grained
information about the entities and features present in an input, and to handle variations in
pose, orientation, and other factors that can be challenging for traditional CNNs.Each
capsule in the Capsule Network is represented by a vector. The length of the vector
represents the probability of the object, and the orientation of the vector represents the pose
of the object. The Capsule Network uses a dynamic routing algorithm to update the weight
matrix during training, which allows the network to learn the relationship between the
features and the objects in the image.

One of the key features of CapsNet is the dynamic routing algorithm used to combine
the outputs of capsules at different levels of the hierarchy[9]. In traditional CNNs, the
outputs of neurons are simply summed or averaged, whereas in CapsNet, the outputs of
capsules are combined using a routing mechanism that takes into account the agreement
between the predicted and actual output of higher-level capsules. This routing mechanism
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allows CapsNet to capture the relationships between different parts of an object and to
handle variations in object appearance. A key component of a capsule network is the
squashing function, which is applied to each vector output by a capsule. The squashing
function is designed to "squash" the length of the vector output to a value between 0 and 1,
while preserving its orientation and direction. The purpose of this function is to ensure that
the output of each capsule represents a probability distribution over the possible properties of
the entity it represents.The specific form of the squashing function used in capsule networks
is the "vector norm" function, which is defined as

= F (1)

where is a vector of length , and  is the th element of the vector. The output of the
squashing function is

_n 2
@+ R

Where is the output vector of length , and the denominator in the equation ensures that the
output vector has length between 0 and 1. The squashing function ensures that the output of
each capsule represents a probability distribution over the possible properties of the entity it
represents, and allows the capsule network to learn relationships between entities in an image,
such as the relative positions and orientations of objects and parts.

Several variants of CapsNet have been proposed since its introduction, including
recursive CapsNets, which use a recursive routing algorithm to allow capsules to
communicate with each other across different levels of the hierarchy, and Capsule Networks
with Convolutional Layers (CapsuleNet-CL), which combine CapsNet with traditional
convolutional layers to improve performance on image classification tasks.CapsNet has
shown promising results on several benchmark datasets, including MNIST, CIFAR-10, and
SVHN. However, there are still some challenges associated with CapsNet, such as the need
for large amounts of training data and the difficulty in optimizing the dynamic routing
algorithm.

3. Other Applications of CapsNet

Capsule GAN [10] is a variation of the Generative Adversarial Network (GAN)
framework[11] that incorporates Capsule Networks (CapsNets) in the generator architecture.
The use of Capsule Networks in the generator architecture allows the model to capture
hierarchical relationships and more nuanced information about the generated images. This
can potentially result in more detailed and coherent image synthesis.

ChxCapsNet[12] is a deep learning model that uses capsule networks and transfer
learning to evaluate pneumonia in pediatric chest radiographs. The ChxCapsNet model uses
a deep capsule network, which is a type of neural network architecture that is designed to
model hierarchical relationships between features in an image. Capsule networks are
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particularly good at detecting complex spatial relationships between objects in an image,
which makes them well-suited for image classification tasks. In addition to the capsule
network, the ChxCapsNet model also incorporates transfer learning, which involves using
pre-trained models to improve the performance of the network. Specifically, the model uses
a pre-trained convolutional neural network (CNN) as a feature extractor to extract features
from the input chest radiographs, which are then fed into the capsule network for
classification[13]. The ChxCapsNet model was trained and tested on a large dataset of
paediatric chest radiographs with and without pneumonia, achieving a high accuracy in
diagnosing pneumonia in these images. The model has the potential to be a valuable tool for
radiologists in assisting with the diagnosis of pneumonia in paediatric patients, which could
improve patient outcomes and reduce healthcare costs.

4. Proposed TBcapsNet

Chest X-ray images are gathered for the TB data set by Shenzhen No.3 Hospital in
Shenzhen, Guangdong providence,China[14]. The dataset contains images in JPEG format.
There are 326 normal x-raysand 336 abnormal x-rays showing various manifestations of
tuberculosis. Prepare the collected data for training by performing various preprocessing
steps such as resizing, normalization, and augmentation. Data augmentation techniques like
rotation, flipping, and adding noise can help increase the model's ability to
generalize. TBcapsnet was designed for Tb detection using CapsNet architecture as shown
in figure 3. Initialize the TBcapsnet model using random weights or pre-trained weights from
a similar task, such as ImageNet. Pre-trained weights can help speed up the training process
and improve performance, especially if the initial dataset is limited.Train TBcapsnet on the
prepared dataset.

During training, the model learns to extract relevant features from the TB images and
classify them as either TB-positive or TB-negative. This involves feeding the images through
the network, calculating the loss, and updating the model's weights using an optimization
algorithm like stochastic gradient descent (SGD) or Adam.CapsNets utilize a specific loss
function called the "margin loss" or "spread loss" to train the network. The margin loss is
designed to encourage a separation between the activations of different classes within the
network.The margin loss in CapsNets is typically defined in equation 3.

= max(©0, *—I I2+r @ - TYymax(0 |lvl[- m)’ ()

Where represents the margin loss,  is equal to 1 if the class c is the target class and 0
otherwise. "is a constant parameter, typically set to 0.9, which controls the lower bound on
the margin. ||V¢|| represents the length (norm) of the output vector for class c. ~ is a
constant parameter, typically set to 0.1, which controls the upper bound on the margin. A is a
regularization parameter that can be adjusted to control the influence of the second termThe
margin loss encourages the length of the output vector corresponding to the target class to be
larger than ™, while keeping the length of non-target class vectors below . The margin
loss penalizes any deviations from this desired margin.
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Experiment with different hyperparameters, such as learning rate, batch size, and
regularization techniques, to find the best configuration for your model. This process
typically involves running multiple training iterations with different hyperparameter settings
and evaluating the model's performance on a validation set. Training and loss curves of
TBcapsnet during training is shown figure 4. Once training is complete, evaluate the trained
model on a separate test set that was not used during training or hyperparameter tuning.
Measure metrics such as accuracy, precision, recall, and F1 score to assess the model's
performance in TB detection.If the model's performance is not satisfactory, then perform
further iterations of training, fine-tuning, or dataset augmentation to improve the model's
accuracy and generalization[15].

model . summary ()

Model: "capsule network"

Layer (type) Dutput Shape Param #
Convolution Layer (Conwv2D) multiple 20992
PrimaryCapsule (Conv2D)} multiple 5308672
dense (Dense) multiple 82432
dense_1 (Dense) multiple 525312
dense_ 2 (Dense) multiple 803600

Total params: 8,215,568
Trainable params: 8,215,568
MNon-trainable params: @

Figure 3: TBcapsNet model summery
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Figure 4: Training and loss curves of TBCapsNet

5. Conclusion

Capsule Networks are a promising approach to overcoming some of the limitations of
traditional convolutional neural networks. By introducing a new type of neuron that models
object pose and deformation, CapsNets are able to handle variations in the input data more
effectively. While CapsNets are still a relatively new technology and have some limitations,
they are an important area of research for the future of computer vision and deep
learning. TBcapanet accuracy depending on the implementation details and available
resources.

References

[1] M. Kim ef al., “Deep learning in medical imaging,” Neurospine, vol. 16, no. 4, pp.
657668, 2019, doi: 10.14245/ns.1938396.198.

280



TECHNO-ENGINEERING

IJTE

2]

[10]

[11]

[12]

[13]

[14]

[15]

S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” Adv.
Neural Inf. Process. Syst., pp. 3857-3867, 2017.

K. Armanious, Y. Mecky, S. Gatidis, and B. Yang, “Adversarial Inpainting of Medical
Image Modalities,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc.,
vol. 2019-May, pp. 3267-3271, 2019, doi: 10.1109/ICASSP.2019.8682677.

Y. Li, H. Su, and J. Zhu, “AdvCapsNet: To defense adversarial attacks based on
Capsule networks,” J. Vis. Commun. Image Represent., vol. 75, no. January, p.
103037, 2021, doi: 10.1016/j.jvcir.2021.103037.

A. M. Hafiz, S. A. Parah, and R. U. A. Bhat, “Attention mechanisms and deep
learning for machine vision: A survey of the state of the art,” pp. 0-24, 2021, [Online].
Available: http://arxiv.org/abs/2106.07550.

V. Acharya et al., “Al-Assisted Tuberculosis Detection and Classification from Chest
X-Rays Using a Deep Learning Normalization-Free Network Model,” Comput. Intell.
Neurosci., vol. 2022, 2022, doi: 10.1155/2022/2399428.

M. Puttagunta and S. Ravi, “Medical image analysis based on deep learning
approach,” Multimed. Tools Appl., vol. 80, no. 16, pp. 24365-24398, 2021, doi:
10.1007/s11042-021-10707-4.

R. Hooda, A. Mittal, and S. Sofat, “Automated TB classification using ensemble of
deep architectures,” Multimed. Tools Appl., vol. 78, no. 22, pp. 31515-31532, 2019,
doi: 10.1007/s11042-019-07984-5.

L. Jiao and J. Zhao, “A Survey on the New Generation of Deep Learning in Image
Processing,” IEEE Access, vol. 7, pp. 172231-172263, 2019, doi:
10.1109/ACCESS.2019.2956508.

K. Marusaki and H. Watanabe, “Capsule GAN Using Capsule Network for Generator
Architecture,” 2020, [Online]. Available: http://arxiv.org/abs/2003.08047.

M. Puttagunt, R. Subban, and C. Kennedy, Nelson Babu, “A Novel COVID-19
Detection Model Based on DCGAN and Deep Transfer Learning,” Procedia Comput.
Sci., vol. 204, pp. 65-72, 2022, doi: 10.1016/j.procs.2022.08.008.

J. D. Bodapati and V. N. Rohith, “ChxCapsNet: Deep capsule network with transfer
learning for evaluating pneumonia in paediatric chest radiographs,” Measurement, vol.
188, p. 110491, 2022, doi: https://doi.org/10.1016/j.measurement.2021.110491.

S. Rajaraman and S. K. Antani, “Modality-Specific Deep Learning Model Ensembles
Toward Improving TB Detection in Chest Radiographs,” IEEE Access, vol. 8, pp.
27318-27326, 2020, doi: 10.1109/ACCESS.2020.2971257.

A. Koeslag and G. de Jager, “Computer Aided Diagnosis of Miliary Tuberculosis,”
Proc. Pattern Recognit. Assoc. South Africa, no. September, 2001.

S. Rajaraman and S. K. Antani, “Modality-Specific Deep Learning Model Ensembles
Toward Improving TB Detection in Chest Radiographs,” IEEE Access, vol. 8, pp.
27318-27326, 2020, doi: 10.1109/ACCESS.2020.2971257.

281



¢ INTEENATIONAL JOURNAL OF
TECHNO-ENGINEERING
IITE
ISSN: 2057-5688

Volume XV Issue | 2023 March http://ijte.uk/ 282



